Compare commits

..

3 Commits

Author SHA1 Message Date
Jay fa2a04db52 Update API dump 2020-05-07 21:58:39 +01:00
Jay bad6904690 fix api dump type for id 2020-05-07 21:56:41 +01:00
Jay 690b947726 Latest API dump 2020-05-07 21:25:30 +01:00
5 changed files with 944 additions and 231 deletions

390
api.json
View File

@ -1,8 +1,8 @@
{
"os": "OSX",
"arch": "x64",
"version": "0.20.7",
"generatedAt": "03/05/2020 09:41:24",
"version": "0.20.8",
"generatedAt": "07/05/2020 21:23:22",
"sandbox": {
"coroutine": {
"create": "function",
@ -20,7 +20,7 @@
"xpcall": "function",
"_DEVICE_PAD_BOTTOM": 0,
"ipairs": "function",
"_TEV_BUILD": "0207",
"_TEV_BUILD": "0208",
"colour": "cdata",
"print": "function",
"pcall": "function",
@ -43,7 +43,7 @@
"insert": "function"
},
"error": "function",
"_TEV_VERSION": "0.20.7",
"_TEV_VERSION": "0.20.8",
"_DEVICE": "Mac",
"_VERSION": "Lua 5.1",
"require": "function",
@ -116,13 +116,14 @@
"tween": "tween",
"networking": "networking",
"interface": "guiFrame",
"graphics": "graphics",
"guiHelper": "guiHelper",
"scene": "scene",
"json": "json",
"load": "function",
"construct": "function",
"json": "json",
"debug": "debug",
"http": "http",
"debug": "debug",
"scene": "scene",
"dev": "dev",
"disconnect": "function"
},
@ -793,6 +794,7 @@
}
},
"constructable": false,
"extends": "objectBase",
"properties": {
"zIndex": {
"hasGetter": true,
@ -800,47 +802,41 @@
"description": "Increasing the zIndex will render this element above others. Currently a signed 16 bit integer.",
"hasSetter": true
},
"active": {
"hasGetter": true,
"type": "boolean",
"description": "When true, this element can capture the mouse's hover",
"hasSetter": true
},
"rotation": {
"hasGetter": true,
"type": "number",
"description": "",
"hasSetter": true
},
"visible": {
"hasGetter": true,
"type": "boolean",
"description": "",
"hasSetter": true
},
"children": {
"hasGetter": true,
"type": "table",
"description": "",
"hasSetter": false
},
"visible": {
"hasGetter": true,
"type": "boolean",
"description": "",
"hasSetter": true
},
"clip": {
"hasGetter": true,
"type": "boolean",
"description": "When true, children are cropped to fit",
"hasSetter": true
},
"name": {
"hasGetter": true,
"type": "string",
"description": "",
"hasSetter": true
},
"parent": {
"hasGetter": true,
"type": "guiBase",
"description": "Parent of a guiBase must be another gui element",
"hasSetter": true
},
"active": {
"hasGetter": true,
"type": "boolean",
"description": "When true, this element can capture the mouse's hover",
"hasSetter": true
}
}
},
@ -1010,18 +1006,18 @@
"description": "",
"hasSetter": true
},
"canvasOffset": {
"hasGetter": true,
"type": "vector2",
"description": "",
"hasSetter": true
},
"canvasSize": {
"hasGetter": true,
"type": "guiCoord",
"description": "If bigger than 1,0,1,0, scrollvars will be visible",
"hasSetter": true
},
"canvasOffset": {
"hasGetter": true,
"type": "vector2",
"description": "",
"hasSetter": true
},
"scrollbarAlpha": {
"hasGetter": true,
"type": "number",
@ -1030,34 +1026,23 @@
}
}
},
"block": {
"methods": {
"setShader": {
"parameters": [
{
"type": "string",
"name": "mesh"
}
],
"returns": [],
"description": "Sets mesh"
}
},
"className": "block",
"objectBase": {
"methods": [],
"className": "objectBase",
"events": [],
"constructable": true,
"constructable": false,
"properties": {
"position": {
"hasGetter": true,
"type": "vector3",
"description": "",
"hasSetter": true
},
"mesh": {
"name": {
"hasGetter": true,
"type": "string",
"description": "",
"hasSetter": true
},
"id": {
"hasGetter": true,
"type": "number",
"description": "",
"hasSetter": false
}
}
},
@ -1324,6 +1309,95 @@
}
}
},
"guiRichTextBox": {
"methods": {
"removeColour": {
"parameters": [
{
"type": "int",
"name": "index"
}
],
"returns": [],
"description": "Removes any set colour at the index provided"
},
"setColour": {
"parameters": [
{
"type": "int",
"name": "index"
},
{
"type": "colour",
"name": "colour"
}
],
"returns": [],
"description": "Sets the colour of text onwards from the provided index"
},
"clearColours": {
"parameters": [],
"returns": [],
"description": "Removes any set colours at all indexes"
}
},
"className": "guiRichTextBox",
"events": [],
"constructable": true,
"extends": "guiTextBox",
"properties": {
"colours": {
"hasGetter": true,
"type": "table",
"description": "Returns a table of {index, colour} (e.g: {{1, colour(1,0,0)}, {3, colour(0,1,0)}})",
"hasSetter": false
}
}
},
"json": {
"methods": {
"decode": {
"parameters": [
{
"type": "string",
"name": "json"
}
],
"returns": [
"table"
],
"description": ""
},
"encodeWithTypes": {
"parameters": [
{
"type": "variant",
"name": "toEncode"
}
],
"returns": [
"string"
],
"description": ""
},
"encode": {
"parameters": [
{
"type": "variant",
"name": "toEncode"
}
],
"returns": [
"string"
],
"description": ""
}
},
"className": "json",
"events": [],
"constructable": false,
"properties": []
},
"guiTextBox": {
"methods": [],
"className": "guiTextBox",
@ -1424,46 +1498,37 @@
}
}
},
"json": {
"graphics": {
"methods": {
"decode": {
"setRenderer": {
"parameters": [
{
"type": "string",
"name": "json"
"name": "rendererName"
}
],
"returns": [],
"description": "Sets the renderer used by this client"
},
"getRenderers": {
"parameters": [],
"returns": [
"table"
],
"description": ""
"description": "Returns the list of supported renderers on this client"
},
"encodeWithTypes": {
"setDebug": {
"parameters": [
{
"type": "variant",
"name": "toEncode"
"type": "bool",
"name": "debugMode"
}
],
"returns": [
"string"
],
"description": ""
},
"encode": {
"parameters": [
{
"type": "variant",
"name": "toEncode"
}
],
"returns": [
"string"
],
"description": ""
"returns": [],
"description": "Enable or disable debug mode"
}
},
"className": "json",
"className": "graphics",
"events": [],
"constructable": false,
"properties": []
@ -1564,51 +1629,95 @@
}
}
},
"guiRichTextBox": {
"methods": {
"removeColour": {
"parameters": [
{
"type": "int",
"name": "index"
}
],
"returns": [],
"description": "Removes any set colour at the index provided"
},
"setColour": {
"parameters": [
{
"type": "int",
"name": "index"
},
{
"type": "colour",
"name": "colour"
}
],
"returns": [],
"description": "Sets the colour of text onwards from the provided index"
},
"clearColours": {
"parameters": [],
"returns": [],
"description": "Removes any set colours at all indexes"
}
},
"className": "guiRichTextBox",
"scene": {
"methods": [],
"className": "scene",
"events": [],
"constructable": true,
"extends": "guiTextBox",
"constructable": false,
"properties": {
"colours": {
"size": {
"hasGetter": true,
"type": "table",
"description": "Returns a table of {index, colour} (e.g: {{1, colour(1,0,0)}, {3, colour(0,1,0)}})",
"hasSetter": false
"type": "Undocumented",
"hasSetter": true
}
}
},
"block": {
"methods": {
"setShader": {
"parameters": [
{
"type": "string",
"name": "mesh"
}
],
"returns": [],
"description": "Sets mesh"
}
},
"className": "block",
"events": [],
"constructable": true,
"properties": {
"position": {
"hasGetter": true,
"type": "vector3",
"description": "",
"hasSetter": true
},
"mesh": {
"hasGetter": true,
"type": "string",
"description": "",
"hasSetter": true
}
}
},
"debug": {
"methods": {
"traceback": {
"parameters": [],
"returns": [],
"description": "Undocumented"
},
"schedulerUi": {
"parameters": [],
"returns": [],
"description": "Undocumented"
}
},
"className": "debug",
"events": {
"changed": {
"parameters": [
{
"type": "string",
"name": "property"
},
{
"type": "variant",
"name": "oldValue"
},
{
"type": "variant",
"name": "newValue"
}
],
"description": "Fired when a property is changed."
},
"print": {
"parameters": [
{
"type": "string",
"name": "message"
}
],
"description": "Fired when a print occurs"
}
},
"constructable": false,
"properties": []
},
"tween": {
"methods": {
"begin": {
@ -1669,53 +1778,6 @@
"constructable": false,
"properties": []
},
"debug": {
"methods": [],
"className": "debug",
"events": {
"changed": {
"parameters": [
{
"type": "string",
"name": "property"
},
{
"type": "variant",
"name": "oldValue"
},
{
"type": "variant",
"name": "newValue"
}
],
"description": "Fired when a property is changed."
},
"print": {
"parameters": [
{
"type": "string",
"name": "message"
}
],
"description": "Fired when a print occurs"
}
},
"constructable": false,
"properties": []
},
"scene": {
"methods": [],
"className": "scene",
"events": [],
"constructable": false,
"properties": {
"size": {
"hasGetter": true,
"type": "Undocumented",
"hasSetter": true
}
}
},
"dev": {
"methods": [],
"className": "dev",
@ -1809,5 +1871,5 @@
"properties": []
}
},
"build": "0207"
"build": "0208"
}

View File

@ -1,56 +1,29 @@
$input v_worldPos, v_view, v_normal, v_tangent, v_bitangent, v_color0, v_position
$input v_worldPos, v_view, v_normal, v_tangent, v_bitangent, v_color0, v_color1
#include <teverse.sh>
/*
* Portions of this file may have been directly taken or adapted from the following open sourced projects:
*
* Copyright 2011-2019 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*
*/
#include <lighting.sh>
uniform vec4 u_lightRgbInnerR;
uniform vec4 u_materialInfo;
uniform vec4 u_camPos;
uniform mat4 u_normalMatrix;
float remapRoughness(float x)
{
return 2.0f * (1.0f / (1.0f - 0.5f + 0.001f) - 1.0f) * (pow(x, 2)) + 0.001f;
}
float schlick(float R0, float cos_theta)
{
float R = R0 + (1.0 - R0) * pow((1.0 - cos_theta), 5.0);
return R;
}
float roughSchlick2(float R0, float cos_theta, float roughness)
{
float area_under_curve = 1.0 / 6.0 * (5.0 * R0 + 1.0);
float new_area_under_curve = 1.0 / (6.0 * roughness + 6.0) * (5.0 * R0 + 1.0);
return schlick(R0, cos_theta) /
(1.0 + roughness) + (area_under_curve - new_area_under_curve);
}
void main()
{
vec3 normal = v_tangent + v_bitangent + v_normal;
float roughness = v_color1.y;
float metalness = v_color1.x;
vec3 wnormal = normalize(mul(mul(u_invView, vec4(v_normal,0.0) ), u_normalMatrix)).xyz;
GBufferData buffer;
buffer.base_color = v_color0.xyz;
buffer.ambient_occlusion = 11.0;
buffer.world_normal = v_normal.xyz;
buffer.roughness = roughness;
buffer.emissive_color = vec3(0.0, 0.0, 0.0);
buffer.metalness = metalness;
buffer.subsurface_color = vec3(1.0, 1.0, 1.0);
buffer.subsurface_opacity = 0.0;
vec3 view = mul(u_view, vec4(v_worldPos, 0.0) ).xyz;
view = normalize(view);
vec3 v = normalize(u_camPos.xyz-view);
float cos_theta = max(dot(normalize(v_position), wnormal), 0.0f);
float remapped_roughness = remapRoughness(u_materialInfo.y);
float fresnel_term = roughSchlick2(0.04, cos_theta, remapped_roughness);
gl_FragData[0] = vec4(u_lightRgbInnerR.xyz, fresnel_term);
gl_FragData[1] = vec4(wnormal, 1.0);
gl_FragData[2] = u_materialInfo;
vec4 result[3];
encodeGBuffer(buffer, result);
gl_FragData[0] = result[0];
gl_FragData[1] = result[1];
gl_FragData[2] = result[2];
}

View File

@ -0,0 +1,672 @@
#ifndef __LIGHTING_SH__
#define __LIGHTING_SH__
const float PI = 3.1415;
vec2 blinn(vec3 _lightDir, vec3 _normal, vec3 _viewDir)
{
float ndotl = dot(_normal, _lightDir);
vec3 reflected = _lightDir - 2.0*ndotl*_normal; // reflect(_lightDir, _normal);
float rdotv = dot(reflected, _viewDir);
return vec2(ndotl, rdotv);
}
float fresnel(float _ndotl, float _bias, float _pow)
{
float facing = (1.0 - _ndotl);
return max(_bias + (1.0 - _bias) * pow(facing, _pow), 0.0);
}
vec4 lit(float _ndotl, float _rdotv, float _m)
{
float diff = max(0.0, _ndotl);
float spec = step(0.0, _ndotl) * max(0.0, _rdotv * _m);
return vec4(1.0, diff, spec, 1.0);
}
vec4 powRgba(vec4 _rgba, float _pow)
{
vec4 result;
result.xyz = pow(_rgba.xyz, vec3_splat(_pow) );
result.w = _rgba.w;
return result;
}
vec3 calcLight(vec3 _wpos, vec3 _normal, vec3 _view, vec3 _lightPos, float _lightRadius, vec3 _lightRgb, float _lightInner)
{
vec3 lp = _lightPos - _wpos;
float attn = 1.0 - smoothstep(_lightInner, 1.0, length(lp) / _lightRadius);
vec3 lightDir = normalize(lp);
vec2 bln = blinn(lightDir, _normal, _view);
vec4 lc = lit(bln.x, bln.y, 1.0);
vec3 rgb = _lightRgb * saturate(lc.y) * attn;
return rgb;
}
float toClipSpaceDepth(float _depthTextureZ)
{
#if BGFX_SHADER_LANGUAGE_GLSL
return _depthTextureZ * 2.0 - 1.0;
#else
return _depthTextureZ;
#endif // BGFX_SHADER_LANGUAGE_GLSL
}
vec3 clipToWorld(mat4 _invViewProj, vec3 _clipPos)
{
vec4 wpos = mul(_invViewProj, vec4(_clipPos, 1.0) );
return wpos.xyz / wpos.w;
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
struct GBufferData
{
vec3 base_color;
float ambient_occlusion;
vec3 world_normal;
float roughness;
vec3 emissive_color;
float metalness;
vec3 subsurface_color;
float subsurface_opacity;
float depth;
};
void encodeGBuffer(in GBufferData data, inout vec4 result[3])
{
result[0] = vec4(data.base_color, data.ambient_occlusion);
//result[1] = vec4(encodeNormalOctahedron(data.world_normal), 0.0f, data.roughness);
result[1] = vec4(encodeNormalUint(data.world_normal), data.roughness);
result[2] = vec4(data.emissive_color, data.metalness);
//result[3] = vec4(data.subsurface_color, data.subsurface_opacity);
}
GBufferData decodeGBuffer(vec2 texcoord, sampler2D tex0, sampler2D tex1, sampler2D tex2, sampler2D tex4)
{
GBufferData data;
vec4 data0 = texture2D(tex0, texcoord);
vec4 data1 = texture2D(tex1, texcoord);
vec4 data2 = texture2D(tex2, texcoord);
float deviceDepth = texture2D(tex4, texcoord).x;
data.base_color = data0.xyz;
data.ambient_occlusion = data0.w;
//data.world_normal = decodeNormalOctahedron(data1.xy);
data.world_normal = decodeNormalUint(data1.xyz);
data.roughness = data1.w;
data.emissive_color = data2.xyz;
data.metalness = data2.w;
data.subsurface_color = vec3(1.0, 1.0, 1.0);
data.subsurface_opacity = 1.0;
data.depth = toClipSpaceDepth(deviceDepth);
return data;
}
float BiasedNDotL(float NDotLWithoutSaturate )
{
return saturate(NDotLWithoutSaturate * 1.08f - 0.08f);
}
float Square( float x )
{
return x*x;
}
vec2 Square( vec2 x )
{
return x*x;
}
vec3 Square( vec3 x )
{
return x*x;
}
vec4 Square( vec4 x )
{
return x*x;
}
float Pow5( float x )
{
float xx = x*x;
return xx * xx * x;
}
vec2 Pow5( vec2 x )
{
vec2 xx = x*x;
return xx * xx * x;
}
vec3 Pow5( vec3 x )
{
vec3 xx = x*x;
return xx * xx * x;
}
vec4 Pow5( vec4 x )
{
vec4 xx = x*x;
return xx * xx * x;
}
float UnClampedPow(float X, float Y)
{
return pow(X, Y);
}
float ClampedPow(float X,float Y)
{
return pow(max(abs(X),0.000001f),Y);
}
float PhongShadingPow(float X, float Y)
{
// The following clamping is done to prevent NaN being the result of the specular power computation.
// Clamping has a minor performance cost.
// In HLSL pow(a, b) is implemented as exp2(log2(a) * b).
// For a=0 this becomes exp2(-inf * 0) = exp2(NaN) = NaN.
// In order to avoid platform differences and rarely occuring image atrifacts we clamp the base.
// Note: Clamping the exponent seemed to fix the issue mentioned TTP but we decided to fix the root and accept the
// minor performance cost.
return ClampedPow(X, Y);
}
float RadialAttenuation(vec3 WorldLightVector, float FalloffExponent)
{
float NormalizeDistanceSquared = dot(WorldLightVector, WorldLightVector);
#if 1
return pow(1.0f - saturate(NormalizeDistanceSquared), FalloffExponent);
#else
// light less than x % is considered 0
const float CutoffPercentage = 30.0f;
float CutoffFraction = CutoffPercentage * 0.01f;
// those could be computed on C++ side
float PreCompX = 1.0f - CutoffFraction;
float PreCompY = CutoffFraction;
float PreCompZ = CutoffFraction / PreCompX;
return (1.0f / ( saturate(NormalizeDistanceSquared) * PreCompX + PreCompY) - 1.0f) * PreCompZ;
#endif
}
/**
* Calculates attenuation for a spot light.
* WorldLightVector is the vector from the position being shaded to the light, divided by the radius of the light.
* SpotDirection is the direction of the spot light.
* SpotAngles.x is CosOuterCone, SpotAngles.y is InvCosConeDifference.
*/
float SpotAttenuation(vec3 WorldLightVector, vec3 SpotDirection, vec2 SpotAngles)
{
float ConeAngleFalloff = Square(saturate((dot(normalize(WorldLightVector), -SpotDirection) - SpotAngles.x) * SpotAngles.y));
return ConeAngleFalloff;
}
// Find representative incoming light direction and energy modification
vec3 AreaLightSpecular( float SourceRadius, float SourceLength, vec3 LightDirection, vec3 LobeRoughness, inout vec3 ToLight, inout vec3 L, vec3 V, vec3 N )
{
vec3 LobeEnergy = vec3(1.0f, 1.0f, 1.0f);
#if 0
vec3 m = LobeRoughness * LobeRoughness;
vec3 R = reflect( -V, N );
float InvDistToLight = 1.0f / ( dot( ToLight, ToLight ) );
if( SourceLength > 0.0f )
{
// Energy conservation
// asin(x) is angle to sphere, atan(x) is angle to disk, saturate(x) is free and in the middle
float LineAngle = saturate( SourceLength * InvDistToLight );
LobeEnergy *= m / saturate( m + 0.5f * LineAngle );
// Closest point on line segment to ray
vec3 L01 = LightDirection * SourceLength;
vec3 L0 = ToLight - 0.5f * L01;
vec3 L1 = ToLight + 0.5f * L01;
#if 1
// Shortest distance
float a = Square( SourceLength );
float b = dot( R, L01 );
float t = saturate( dot( L0, b*R - L01 ) / (a - b*b) );
#else
// Smallest angle
float A = Square( SourceLength );
float B = 2.0f * dot( L0, L01 );
float C = dot( L0, L0 );
float D = dot( R, L0 );
float E = dot( R, L01 );
float t = saturate( (B*D - 2.0f*C*E) / (B*E - 2.0f*A*D) );
#endif
ToLight = L0 + t * L01;
}
if( SourceRadius > 0.0f )
{
// Energy conservation
// asin(x) is angle to sphere, atan(x) is angle to disk, saturate(x) is free and in the middle
float SphereAngle = saturate( SourceRadius * InvDistToLight );
LobeEnergy *= Square( m / saturate( m + 0.5f * SphereAngle ) );
// Closest point on sphere to ray
vec3 ClosestPointOnRay = dot( ToLight, R ) * R;
vec3 CenterToRay = ClosestPointOnRay - ToLight;
vec3 ClosestPointOnSphere = ToLight + CenterToRay * saturate( SourceRadius / sqrt( dot( CenterToRay, CenterToRay ) ) );
ToLight = ClosestPointOnSphere;
}
#endif
L = normalize( ToLight );
return LobeEnergy;
}
/*=============================================================================
BRDF: Bidirectional reflectance distribution functions.
=============================================================================*/
// Physically based shading model
// parameterized with the below options
// Diffuse model
// 0: Lambert
// 1: Burley
// 2: Oren-Nayar
#define PHYSICAL_DIFFUSE 0
// Microfacet distribution function
// 0: Blinn
// 1: Beckmann
// 2: GGX
#define PHYSICAL_SPEC_D 2
// Geometric attenuation or shadowing
// 0: Implicit
// 1: Neumann
// 2: Kelemen
// 3: Schlick
// 4: Smith (matched to GGX)
// 5: SmithJointApprox
// 6: CookTorrance
#define PHYSICAL_SPEC_V 4
// Fresnel
// 0: None
// 1: Schlick
// 2: CookTorrance
// 3: Fresnel
#define PHYSICAL_SPEC_F 1
#define PI 3.1415926535f
#define RECIP_PI 1.0f / PI
#define RADIANS_PER_DEGREE 0.0174532925f
#define DEGREES_PER_RADIAN 57.2957795f
/*=============================================================================
BRDF: Diffuse functions.
=============================================================================*/
vec3 Diffuse_Lambert( vec3 DiffuseColor )
{
return DiffuseColor * RECIP_PI;
}
// [Burley 2012, "Physically-Based Shading at Disney"]
// [Lagrade et al. 2014, "Moving Frostbite to Physically Based Rendering"]
vec3 Diffuse_Burley( vec3 DiffuseColor, float Roughness, float NoV, float NoL, float VoH )
{
float FD90 = 0.5f + 2.0f * VoH * VoH * Roughness;
float FdV = 1.0f + (FD90 - 1.0f) * Pow5( 1.0f - NoV );
float FdL = 1.0f + (FD90 - 1.0f) * Pow5( 1.0f - NoL );
return DiffuseColor * ( (1.0f / PI) * FdV * FdL );
}
// [Gotanda 2012, "Beyond a Simple Physically Based Blinn-Phong Model in Real-Time"]
vec3 Diffuse_OrenNayar( vec3 DiffuseColor, float Roughness, float NoV, float NoL, float VoH )
{
float a = Roughness * Roughness;
float s = a;// / ( 1.29 + 0.5 * a );
float s2 = s * s;
float VoL = 2.0f * VoH * VoH - 1.0f; // double angle identity
float Cosri = VoL - NoV * NoL;
float C1 = 1.0f - 0.5f * s2 / (s2 + 0.33f);
float C2 = 0.45f * s2 / (s2 + 0.09f) * Cosri * ( Cosri >= 0.0f ? rcp( max( NoL, NoV ) ) : 1.0f );
return DiffuseColor / PI * ( C1 + C2 ) * ( 1.0f + Roughness * 0.5f );
}
vec3 Diffuse( vec3 DiffuseColor, float Roughness, float NoV, float NoL, float VoH )
{
#if PHYSICAL_DIFFUSE == 0
return Diffuse_Lambert( DiffuseColor );
#elif PHYSICAL_DIFFUSE == 1
return Diffuse_Burley( DiffuseColor, Roughness, NoV, NoL, VoH );
#elif PHYSICAL_DIFFUSE == 2
return Diffuse_OrenNayar( DiffuseColor, Roughness, NoV, NoL, VoH );
#endif
}
/*=============================================================================
BRDF: Distribution functions.
=============================================================================*/
// [Blinn 1977, "Models of light reflection for computer synthesized pictures"]
float D_Blinn( float Roughness, float NoH )
{
float m = Roughness * Roughness;
float m2 = m * m;
float n = 2.0f / m2 - 2.0f;
return (n+2.0f) / (2.0f*PI) * PhongShadingPow( NoH, n ); // 1 mad, 1 exp, 1 mul, 1 log
}
// [Beckmann 1963, "The scattering of electromagnetic waves from rough surfaces"]
float D_Beckmann( float Roughness, float NoH )
{
float m = Roughness * Roughness;
float m2 = m * m;
float NoH2 = NoH * NoH;
return exp( (NoH2 - 1.0f) / (m2 * NoH2) ) / ( PI * m2 * NoH2 * NoH2 );
}
// GGX / Trowbridge-Reitz
// [Walter et al. 2007, "Microfacet models for refraction through rough surfaces"]
float D_GGX( float Roughness, float NoH )
{
float m = Roughness * Roughness;
float m2 = m * m;
float d = ( NoH * m2 - NoH ) * NoH + 1.0f; // 2 mad
return m2 / ( PI*d*d ); // 4 mul, 1 rcp
}
// Anisotropic GGX
// [Burley 2012, "Physically-Based Shading at Disney"]
float D_GGXaniso( float RoughnessX, float RoughnessY, float NoH, vec3 H, vec3 X, vec3 Y )
{
float mx = RoughnessX * RoughnessX;
float my = RoughnessY * RoughnessY;
float XoH = dot( X, H );
float YoH = dot( Y, H );
float d = XoH*XoH / (mx*mx) + YoH*YoH / (my*my) + NoH*NoH;
return 1.0f / ( PI * mx*my * d*d );
}
float Distribution( float Roughness, float NoH )
{
#if PHYSICAL_SPEC_D == 0
return D_Blinn( Roughness, NoH );
#elif PHYSICAL_SPEC_D == 1
return D_Beckmann( Roughness, NoH );
#elif PHYSICAL_SPEC_D == 2
return D_GGX( Roughness, NoH );
#endif
}
/*=============================================================================
BRDF: Visibility functions.
=============================================================================*/
float Vis_Implicit( )
{
return 0.25f;
}
// [Neumann et al. 1999, "Compact metallic reflectance models"]
float Vis_Neumann( float NoV, float NoL )
{
return 1.0f / ( 4.0f * max( NoL, NoV ) );
}
// [Kelemen 2001, "A microfacet based coupled specular-matte brdf model with importance sampling"]
float Vis_Kelemen( float VoH )
{
return rcp( 4.0f * VoH * VoH );
}
// Tuned to match behavior of G_Smith
// [Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering"]
float Vis_Schlick( float Roughness, float NoV, float NoL )
{
float k = Square( Roughness ) * 0.5f;
float Vis_SchlickV = NoV * (1.0f - k) + k;
float Vis_SchlickL = NoL * (1.0f - k) + k;
return 0.25f / ( Vis_SchlickV * Vis_SchlickL );
}
// Smith term for GGX modified by Disney to be less "hot" for small roughness values
// [Smith 1967, "Geometrical shadowing of a random rough surface"]
// [Burley 2012, "Physically-Based Shading at Disney"]
float Vis_Smith( float Roughness, float NoV, float NoL )
{
float a = Square( Roughness );
float a2 = a*a;
float Vis_SmithV = NoV + sqrt( NoV * (NoV - NoV * a2) + a2 );
float Vis_SmithL = NoL + sqrt( NoL * (NoL - NoL * a2) + a2 );
return rcp( Vis_SmithV * Vis_SmithL );
}
// Appoximation of joint Smith term for GGX
// [Heitz 2014, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs"]
float Vis_SmithJointApprox( float Roughness, float NoV, float NoL )
{
float a = Square( Roughness );
float Vis_SmithV = NoL * ( NoV * ( 1.0f - a ) + a );
float Vis_SmithL = NoV * ( NoL * ( 1.0f - a ) + a );
return 0.5f * rcp( Vis_SmithV + Vis_SmithL );
}
float Vis_CookTorrance(float Roughness, float NoV, float NoL, float VoH, float NoH )
{
float a = Square( Roughness );
return min(1.0f, min((2.0f * NoH * NoV)/VoH, (2.0f * NoH * NoL)/ VoH));
}
// Vis = G / (4*NoL*NoV)
float Visibility( float Roughness, float NoV, float NoL, float VoH, float NoH )
{
#if PHYSICAL_SPEC_V == 0
return Vis_Implicit( );
#elif PHYSICAL_SPEC_V == 1
return Vis_Neumann( NoV, NoL );
#elif PHYSICAL_SPEC_V == 2
return Vis_Kelemen( VoH );
#elif PHYSICAL_SPEC_V == 3
return Vis_Schlick( Roughness, NoV, NoL );
#elif PHYSICAL_SPEC_V == 4
return Vis_Smith( Roughness, NoV, NoL );
#elif PHYSICAL_SPEC_V == 5
return Vis_SmithJointApprox( Roughness, NoV, NoL );
#elif PHYSICAL_SPEC_V == 6
return Vis_CookTorrance( Roughness, NoV, NoL, VoH, NoH );
#endif
}
/*=============================================================================
BRDF: Fresnel functions.
=============================================================================*/
vec3 F_None( vec3 SpecularColor )
{
return SpecularColor;
}
// [Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering"]
// [Lagarde 2012, "Spherical Gaussian approximation for Blinn-Phong, Phong and Fresnel"]
vec3 F_Schlick( vec3 SpecularColor, float VoH )
{
float Fc = Pow5( 1.0f - VoH ); // 1 sub, 3 mul
//return Fc + (1.0f - Fc) * SpecularColor; // 1 add, 3 mad
// Anything less than 2% is physically impossible and is instead considered to be shadowing
return saturate( 50.0f * SpecularColor.g ) * Fc + (1.0f - Fc) * SpecularColor;
}
vec3 Fresnel_CookTorrance( vec3 SpecularColor, float VoH )
{
vec3 VdotH = vec3(VoH, VoH, VoH);
vec3 n = (1.0f + sqrt(SpecularColor)) / (1.0f - sqrt(SpecularColor));
vec3 g = sqrt(n * n + VdotH * VdotH - 1.0f);
vec3 part1 = (g - VdotH)/(g + VdotH);
vec3 part2 = ((g + VdotH) * VdotH - 1.0f)/((g - VdotH) * VdotH + 1.0f);
return max(vec3(0.0f, 0.0f, 0.0f), 0.5f * part1 * part1 * ( 1.0f + part2 * part2));
}
vec3 F_Fresnel( vec3 SpecularColor, float VoH )
{
vec3 SpecularColorSqrt = sqrt( clamp( vec3(0.0f, 0.0f, 0.0f), vec3(0.99f, 0.99f, 0.99f), SpecularColor ) );
vec3 n = ( 1.0f + SpecularColorSqrt ) / ( 1.0f - SpecularColorSqrt );
vec3 g = sqrt( n*n + VoH*VoH - 1.0f );
return 0.5f * Square( (g - VoH) / (g + VoH) ) * ( 1.0f + Square( ((g+VoH)*VoH - 1.0f) / ((g-VoH)*VoH + 1.0f) ) );
}
// ----------------------------------------------------------------------------
vec3 F_Roughness(vec3 SpecularColor, float Roughness, float VoH)
{
// Sclick using roughness to attenuate fresnel.
return (SpecularColor + (max(vec3(1.0f-Roughness, 1.0f-Roughness, 1.0f-Roughness), SpecularColor) - SpecularColor) * pow((1.0f - VoH), 5.0f));
}
vec3 Fresnel( vec3 SpecularColor, float VoH )
{
#if PHYSICAL_SPEC_F == 0
return F_None( SpecularColor );
#elif PHYSICAL_SPEC_F == 1
return F_Schlick( SpecularColor, VoH );
#elif PHYSICAL_SPEC_F == 2
return Fresnel_CookTorrance( SpecularColor, VoH );
#elif PHYSICAL_SPEC_F == 3
return F_Fresnel( SpecularColor, VoH );
#endif
}
struct SurfaceShading
{
vec3 direct;
vec3 indirect;
};
SurfaceShading StandardShading( vec3 DiffuseColor, vec3 IndirectDiffuse, vec3 SpecularColor, vec3 IndirectSpecular, vec3 LobeRoughness, vec3 LobeEnergy, float metalness, float occlusion, vec3 L, vec3 V, vec3 N )
{
vec3 H = normalize(V + L);
float NoL = saturate( dot(N, L) );
float NoV = saturate( abs( dot(N, V) ) + 1e-5 );
float NoH = saturate( dot(N, H) );
float VoH = saturate( dot(V, H) );
float roughness = LobeRoughness[1];
// Generalized microfacet specular
float D = Distribution( roughness, NoH ) * LobeEnergy[1];
float Vis = Visibility( roughness, NoV, NoL, VoH, NoH );
vec3 F = Fresnel( SpecularColor, VoH );
vec3 diffuse_color = Diffuse( DiffuseColor, roughness, NoV, NoL, VoH );
float specular_occlusion = saturate( Square( NoV + occlusion ) - 1.0f + occlusion );
vec3 env_fresnel = F_Roughness(SpecularColor, roughness, NoV);
vec2 env_brdf = vec2(0.0, 0.0); //texture2D(BRDFIntegrationMap, vec2(NoV, roughness)).xy;
//set to 0 otherwise we get artefacts
env_brdf.y = 0.0f;
vec3 indirect_spec = IndirectSpecular * (env_fresnel * env_brdf.x + env_brdf.y) * specular_occlusion;
SurfaceShading shading;
shading.indirect = DiffuseColor * IndirectDiffuse + indirect_spec;
shading.direct = diffuse_color * LobeEnergy[2] + (D * Vis) * F;
return shading;
}
vec3 SubsurfaceShading( vec3 SubsurfaceColor, float Opacity, float AO, vec3 L, vec3 V, vec3 N )
{
vec3 H = normalize(V + L);
// to get an effect when you see through the material
// hard coded pow constant
float InScatter = pow(saturate(dot(L, -V)), 12.0f) * mix(3.0f, 0.1f, Opacity);
// wrap around lighting, /(PI*2) to be energy consistent (hack do get some view dependnt and light dependent effect)
// Opacity of 0 gives no normal dependent lighting, Opacity of 1 gives strong normal contribution
float NormalContribution = saturate(dot(N, H) * Opacity + 1.0f - Opacity);
float BackScatter = AO * NormalContribution / (PI * 2.0f);
// lerp to never exceed 1 (energy conserving)
return SubsurfaceColor * mix(BackScatter, 1.0f, InScatter);
}
vec3 SubsurfaceShadingTwoSided( vec3 SubsurfaceColor, vec3 L, vec3 V, vec3 N )
{
// http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/
float Wrap = 0.5f;
float NoL = saturate( ( dot(-N, L) + Wrap ) / Square( 1.0f + Wrap ) );
// GGX scatter distribution
float VoL = saturate( dot(V, -L) );
float a = 0.6f;
float a2 = a * a;
float d = ( VoL * a2 - VoL ) * VoL + 1.0f; // 2 mad
float GGX = (a2 / PI) / (d * d); // 2 mul, 1 rcp
return NoL * GGX * SubsurfaceColor;
}
float ComputeReflectionCaptureMipFromRoughness(float Roughness, float maxMipLevels)
{
const float REFLECTION_CAPTURE_ROUGHEST_MIP = 1.0f;
const float REFLECTION_CAPTURE_ROUGHNESS_MIP_SCALE = 1.5f;
// Heuristic that maps roughness to mip level
// This is done in a way such that a certain mip level will always have the same roughness, regardless of how many mips are in the texture
// Using more mips in the cubemap just allows sharper reflections to be supported
// Note: this must match the logic in FilterReflectionEnvironment that generates the mip filter samples!
float LevelFrom1x1 = REFLECTION_CAPTURE_ROUGHEST_MIP - REFLECTION_CAPTURE_ROUGHNESS_MIP_SCALE * log2(Roughness);
//// Note: must match GReflectionCaptureSize
float HardcodedNumCaptureArrayMips = maxMipLevels;
return HardcodedNumCaptureArrayMips - 1.0f - LevelFrom1x1;
}
#endif // __LIGHTING_SH__

View File

@ -4,7 +4,8 @@ vec3 v_position : TEXCOORD3 = vec3(0.0, 0.0, 0.0);
vec3 v_normal : NORMAL = vec3(0.0, 0.0, 1.0);
vec3 v_tangent : TANGENT = vec3(1.0, 0.0, 0.0);
vec3 v_bitangent : BINORMAL = vec3(0.0, 1.0, 0.0);
vec4 v_color0 : COLOR = vec4(1.0, 0.0, 0.0, 1.0);
vec4 v_color0 : COLOR0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 v_color1 : COLOR1 = vec4(1.0, 0.0, 0.0, 1.0);
vec2 v_texcoord0 : TEXCOORD0 = vec2(0.0, 0.0);
vec3 a_position : POSITION;
@ -17,5 +18,7 @@ vec4 i_data1 : TEXCOORD6;
vec4 i_data2 : TEXCOORD5;
vec4 i_data3 : TEXCOORD4;
vec4 i_data4 : TEXCOORD3;
vec4 a_texcoord2 : TEXCOORD2;
ivec4 a_indices : BLENDINDICES;
vec4 a_weight : BLENDWEIGHT;

View File

@ -1,5 +1,5 @@
$input a_position, a_normal, a_tangent, a_color0
$output v_worldPos, v_view, v_normal, v_tangent, v_bitangent, v_color0, v_position
$input a_position, a_normal, a_tangent, a_color0, i_data0, i_data1, i_data2, i_data3, i_data4, a_texcoord2
$output v_worldPos, v_view, v_normal, v_tangent, v_bitangent, v_color0, v_color1
/*
* Portions of this file may have been directly taken or adapted from the following open sourced projects:
@ -13,30 +13,33 @@ $output v_worldPos, v_view, v_normal, v_tangent, v_bitangent, v_color0, v_positi
void main()
{
vec3 wpos = mul(u_model[0], vec4(a_position, 1.0) ).xyz;
mat4 model;
model[0] = i_data0;
model[1] = i_data1;
model[2] = i_data2;
model[3] = i_data3;
vec3 wpos = instMul(model, vec4(a_position, 1.0) ).xyz;
gl_Position = mul(u_viewProj, vec4(wpos, 1.0) );
vec4 normal = a_normal * 2.0 - 1.0;
vec3 wnormal = mul(u_model[0], vec4(normal.xyz, 0.0) ).xyz;
vec4 tangent = a_tangent * 2.0 - 1.0;
vec3 wtangent = mul(u_model[0], vec4(tangent.xyz, 0.0) ).xyz;
vec3 viewNormal = normalize(mul(u_view, vec4(wnormal, 0.0) ).xyz);
vec3 viewTangent = normalize(mul(u_view, vec4(wtangent, 0.0) ).xyz);
vec3 viewBitangent = cross(viewNormal, viewTangent) * tangent.w;
mat3 tbn = mat3(viewTangent, viewBitangent, viewNormal);
v_worldPos = wpos;
mat3 modelIT = calculateInverseTranspose(u_model[0]);
vec4 normal = a_normal * 2.0 - 1.0;
vec4 tangent = a_tangent * 2.0 - 1.0;
vec3 wnormal = normalize(mul(modelIT, normal.xyz ));
vec3 wtangent = normalize(mul(modelIT, tangent.xyz ));
vec3 view = mul(u_view, vec4(wpos, 0.0) ).xyz;
v_view = mul(view, tbn);
v_view = view; //mul(view, tbn);
v_normal = viewNormal;
v_tangent = viewTangent;
v_bitangent = viewBitangent;
v_normal = normalize(wnormal);
v_tangent = wtangent;
v_bitangent = vec3(0.0, 0.0, 0.0);
v_position = a_position;
//v_position = a_position;
v_color0 = a_color0;
v_color0 = i_data4;
v_color1 = a_texcoord2;
}