potatOS-for-linux/src/core/cgroup.c

5486 lines
208 KiB
C

/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <fcntl.h>
#include "sd-messages.h"
#include "af-list.h"
#include "alloc-util.h"
#include "blockdev-util.h"
#include "bpf-devices.h"
#include "bpf-firewall.h"
#include "bpf-foreign.h"
#include "bpf-restrict-ifaces.h"
#include "bpf-socket-bind.h"
#include "btrfs-util.h"
#include "bus-error.h"
#include "bus-locator.h"
#include "cgroup-setup.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "devnum-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "firewall-util.h"
#include "in-addr-prefix-util.h"
#include "inotify-util.h"
#include "io-util.h"
#include "ip-protocol-list.h"
#include "limits-util.h"
#include "nulstr-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "percent-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "set.h"
#include "serialize.h"
#include "special.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "virt.h"
#if BPF_FRAMEWORK
#include "bpf-dlopen.h"
#include "bpf-link.h"
#include "bpf/restrict_fs/restrict-fs-skel.h"
#endif
#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
* problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
* out specific attributes from us. */
#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
static void unit_remove_from_cgroup_empty_queue(Unit *u);
uint64_t cgroup_tasks_max_resolve(const CGroupTasksMax *tasks_max) {
if (tasks_max->scale == 0)
return tasks_max->value;
return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
}
bool manager_owns_host_root_cgroup(Manager *m) {
assert(m);
/* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
* group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
* appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
* we run in any kind of container virtualization. */
if (MANAGER_IS_USER(m))
return false;
if (detect_container() > 0)
return false;
return empty_or_root(m->cgroup_root);
}
bool unit_has_startup_cgroup_constraints(Unit *u) {
assert(u);
/* Returns true if this unit has any directives which apply during
* startup/shutdown phases. */
CGroupContext *c;
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->startup_cpuset_cpus.set ||
c->startup_cpuset_mems.set ||
c->startup_memory_high_set ||
c->startup_memory_max_set ||
c->startup_memory_swap_max_set||
c->startup_memory_zswap_max_set ||
c->startup_memory_low_set;
}
bool unit_has_host_root_cgroup(const Unit *u) {
assert(u);
assert(u->manager);
/* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
* the manager manages the root cgroup. */
if (!manager_owns_host_root_cgroup(u->manager))
return false;
return unit_has_name(u, SPECIAL_ROOT_SLICE);
}
static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
r = cg_set_attribute(controller, crt->cgroup_path, attribute, value);
if (r < 0)
log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
strna(attribute), empty_to_root(crt->cgroup_path), (int) strcspn(value, NEWLINE), value);
return r;
}
static void cgroup_compat_warn(void) {
static bool cgroup_compat_warned = false;
if (cgroup_compat_warned)
return;
log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
"See cgroup-compat debug messages for details.");
cgroup_compat_warned = true;
}
#define log_cgroup_compat(unit, fmt, ...) do { \
cgroup_compat_warn(); \
log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
} while (false)
void cgroup_context_init(CGroupContext *c) {
assert(c);
/* Initialize everything to the kernel defaults. When initializing a bool member to 'true', make
* sure to serialize in execute-serialize.c using serialize_bool() instead of
* serialize_bool_elide(), as sd-executor will initialize here to 'true', but serialize_bool_elide()
* skips serialization if the value is 'false' (as that's the common default), so if the value at
* runtime is zero it would be lost after deserialization. Same when initializing uint64_t and other
* values, update/add a conditional serialization check. This is to minimize the amount of
* serialized data that is sent to the sd-executor, so that there is less work to do on the default
* cases. */
*c = (CGroupContext) {
.cpu_weight = CGROUP_WEIGHT_INVALID,
.startup_cpu_weight = CGROUP_WEIGHT_INVALID,
.cpu_quota_per_sec_usec = USEC_INFINITY,
.cpu_quota_period_usec = USEC_INFINITY,
.cpu_shares = CGROUP_CPU_SHARES_INVALID,
.startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
.memory_high = CGROUP_LIMIT_MAX,
.startup_memory_high = CGROUP_LIMIT_MAX,
.memory_max = CGROUP_LIMIT_MAX,
.startup_memory_max = CGROUP_LIMIT_MAX,
.memory_swap_max = CGROUP_LIMIT_MAX,
.startup_memory_swap_max = CGROUP_LIMIT_MAX,
.memory_zswap_max = CGROUP_LIMIT_MAX,
.startup_memory_zswap_max = CGROUP_LIMIT_MAX,
.memory_limit = CGROUP_LIMIT_MAX,
.memory_zswap_writeback = true,
.io_weight = CGROUP_WEIGHT_INVALID,
.startup_io_weight = CGROUP_WEIGHT_INVALID,
.blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.tasks_max = CGROUP_TASKS_MAX_UNSET,
.moom_swap = MANAGED_OOM_AUTO,
.moom_mem_pressure = MANAGED_OOM_AUTO,
.moom_preference = MANAGED_OOM_PREFERENCE_NONE,
/* The default duration value in oomd.conf will be used when
* moom_mem_pressure_duration_usec is set to infinity. */
.moom_mem_pressure_duration_usec = USEC_INFINITY,
.memory_pressure_watch = _CGROUP_PRESSURE_WATCH_INVALID,
.memory_pressure_threshold_usec = USEC_INFINITY,
};
}
int cgroup_context_add_io_device_weight_dup(CGroupContext *c, const CGroupIODeviceWeight *w) {
_cleanup_free_ CGroupIODeviceWeight *n = NULL;
assert(c);
assert(w);
n = new(CGroupIODeviceWeight, 1);
if (!n)
return -ENOMEM;
*n = (CGroupIODeviceWeight) {
.path = strdup(w->path),
.weight = w->weight,
};
if (!n->path)
return -ENOMEM;
LIST_PREPEND(device_weights, c->io_device_weights, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_io_device_limit_dup(CGroupContext *c, const CGroupIODeviceLimit *l) {
_cleanup_free_ CGroupIODeviceLimit *n = NULL;
assert(c);
assert(l);
n = new0(CGroupIODeviceLimit, 1);
if (!n)
return -ENOMEM;
n->path = strdup(l->path);
if (!n->path)
return -ENOMEM;
for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
n->limits[type] = l->limits[type];
LIST_PREPEND(device_limits, c->io_device_limits, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_io_device_latency_dup(CGroupContext *c, const CGroupIODeviceLatency *l) {
_cleanup_free_ CGroupIODeviceLatency *n = NULL;
assert(c);
assert(l);
n = new(CGroupIODeviceLatency, 1);
if (!n)
return -ENOMEM;
*n = (CGroupIODeviceLatency) {
.path = strdup(l->path),
.target_usec = l->target_usec,
};
if (!n->path)
return -ENOMEM;
LIST_PREPEND(device_latencies, c->io_device_latencies, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_block_io_device_weight_dup(CGroupContext *c, const CGroupBlockIODeviceWeight *w) {
_cleanup_free_ CGroupBlockIODeviceWeight *n = NULL;
assert(c);
assert(w);
n = new(CGroupBlockIODeviceWeight, 1);
if (!n)
return -ENOMEM;
*n = (CGroupBlockIODeviceWeight) {
.path = strdup(w->path),
.weight = w->weight,
};
if (!n->path)
return -ENOMEM;
LIST_PREPEND(device_weights, c->blockio_device_weights, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_block_io_device_bandwidth_dup(CGroupContext *c, const CGroupBlockIODeviceBandwidth *b) {
_cleanup_free_ CGroupBlockIODeviceBandwidth *n = NULL;
assert(c);
assert(b);
n = new(CGroupBlockIODeviceBandwidth, 1);
if (!n)
return -ENOMEM;
*n = (CGroupBlockIODeviceBandwidth) {
.rbps = b->rbps,
.wbps = b->wbps,
};
LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_device_allow_dup(CGroupContext *c, const CGroupDeviceAllow *a) {
_cleanup_free_ CGroupDeviceAllow *n = NULL;
assert(c);
assert(a);
n = new(CGroupDeviceAllow, 1);
if (!n)
return -ENOMEM;
*n = (CGroupDeviceAllow) {
.path = strdup(a->path),
.permissions = a->permissions,
};
if (!n->path)
return -ENOMEM;
LIST_PREPEND(device_allow, c->device_allow, TAKE_PTR(n));
return 0;
}
static int cgroup_context_add_socket_bind_item_dup(CGroupContext *c, const CGroupSocketBindItem *i, CGroupSocketBindItem *h) {
_cleanup_free_ CGroupSocketBindItem *n = NULL;
assert(c);
assert(i);
n = new(CGroupSocketBindItem, 1);
if (!n)
return -ENOMEM;
*n = (CGroupSocketBindItem) {
.address_family = i->address_family,
.ip_protocol = i->ip_protocol,
.nr_ports = i->nr_ports,
.port_min = i->port_min,
};
LIST_PREPEND(socket_bind_items, h, TAKE_PTR(n));
return 0;
}
int cgroup_context_add_socket_bind_item_allow_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_allow);
}
int cgroup_context_add_socket_bind_item_deny_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_deny);
}
int cgroup_context_copy(CGroupContext *dst, const CGroupContext *src) {
struct in_addr_prefix *i;
char *iface;
int r;
assert(src);
assert(dst);
dst->cpu_accounting = src->cpu_accounting;
dst->io_accounting = src->io_accounting;
dst->blockio_accounting = src->blockio_accounting;
dst->memory_accounting = src->memory_accounting;
dst->tasks_accounting = src->tasks_accounting;
dst->ip_accounting = src->ip_accounting;
dst->memory_oom_group = src->memory_oom_group;
dst->cpu_weight = src->cpu_weight;
dst->startup_cpu_weight = src->startup_cpu_weight;
dst->cpu_quota_per_sec_usec = src->cpu_quota_per_sec_usec;
dst->cpu_quota_period_usec = src->cpu_quota_period_usec;
dst->cpuset_cpus = src->cpuset_cpus;
dst->startup_cpuset_cpus = src->startup_cpuset_cpus;
dst->cpuset_mems = src->cpuset_mems;
dst->startup_cpuset_mems = src->startup_cpuset_mems;
dst->io_weight = src->io_weight;
dst->startup_io_weight = src->startup_io_weight;
LIST_FOREACH_BACKWARDS(device_weights, w, LIST_FIND_TAIL(device_weights, src->io_device_weights)) {
r = cgroup_context_add_io_device_weight_dup(dst, w);
if (r < 0)
return r;
}
LIST_FOREACH_BACKWARDS(device_limits, l, LIST_FIND_TAIL(device_limits, src->io_device_limits)) {
r = cgroup_context_add_io_device_limit_dup(dst, l);
if (r < 0)
return r;
}
LIST_FOREACH_BACKWARDS(device_latencies, l, LIST_FIND_TAIL(device_latencies, src->io_device_latencies)) {
r = cgroup_context_add_io_device_latency_dup(dst, l);
if (r < 0)
return r;
}
dst->default_memory_min = src->default_memory_min;
dst->default_memory_low = src->default_memory_low;
dst->default_startup_memory_low = src->default_startup_memory_low;
dst->memory_min = src->memory_min;
dst->memory_low = src->memory_low;
dst->startup_memory_low = src->startup_memory_low;
dst->memory_high = src->memory_high;
dst->startup_memory_high = src->startup_memory_high;
dst->memory_max = src->memory_max;
dst->startup_memory_max = src->startup_memory_max;
dst->memory_swap_max = src->memory_swap_max;
dst->startup_memory_swap_max = src->startup_memory_swap_max;
dst->memory_zswap_max = src->memory_zswap_max;
dst->startup_memory_zswap_max = src->startup_memory_zswap_max;
dst->default_memory_min_set = src->default_memory_min_set;
dst->default_memory_low_set = src->default_memory_low_set;
dst->default_startup_memory_low_set = src->default_startup_memory_low_set;
dst->memory_min_set = src->memory_min_set;
dst->memory_low_set = src->memory_low_set;
dst->startup_memory_low_set = src->startup_memory_low_set;
dst->startup_memory_high_set = src->startup_memory_high_set;
dst->startup_memory_max_set = src->startup_memory_max_set;
dst->startup_memory_swap_max_set = src->startup_memory_swap_max_set;
dst->startup_memory_zswap_max_set = src->startup_memory_zswap_max_set;
dst->memory_zswap_writeback = src->memory_zswap_writeback;
SET_FOREACH(i, src->ip_address_allow) {
r = in_addr_prefix_add(&dst->ip_address_allow, i);
if (r < 0)
return r;
}
SET_FOREACH(i, src->ip_address_deny) {
r = in_addr_prefix_add(&dst->ip_address_deny, i);
if (r < 0)
return r;
}
dst->ip_address_allow_reduced = src->ip_address_allow_reduced;
dst->ip_address_deny_reduced = src->ip_address_deny_reduced;
if (!strv_isempty(src->ip_filters_ingress)) {
dst->ip_filters_ingress = strv_copy(src->ip_filters_ingress);
if (!dst->ip_filters_ingress)
return -ENOMEM;
}
if (!strv_isempty(src->ip_filters_egress)) {
dst->ip_filters_egress = strv_copy(src->ip_filters_egress);
if (!dst->ip_filters_egress)
return -ENOMEM;
}
LIST_FOREACH_BACKWARDS(programs, l, LIST_FIND_TAIL(programs, src->bpf_foreign_programs)) {
r = cgroup_context_add_bpf_foreign_program_dup(dst, l);
if (r < 0)
return r;
}
SET_FOREACH(iface, src->restrict_network_interfaces) {
r = set_put_strdup(&dst->restrict_network_interfaces, iface);
if (r < 0)
return r;
}
dst->restrict_network_interfaces_is_allow_list = src->restrict_network_interfaces_is_allow_list;
dst->cpu_shares = src->cpu_shares;
dst->startup_cpu_shares = src->startup_cpu_shares;
dst->blockio_weight = src->blockio_weight;
dst->startup_blockio_weight = src->startup_blockio_weight;
LIST_FOREACH_BACKWARDS(device_weights, l, LIST_FIND_TAIL(device_weights, src->blockio_device_weights)) {
r = cgroup_context_add_block_io_device_weight_dup(dst, l);
if (r < 0)
return r;
}
LIST_FOREACH_BACKWARDS(device_bandwidths, l, LIST_FIND_TAIL(device_bandwidths, src->blockio_device_bandwidths)) {
r = cgroup_context_add_block_io_device_bandwidth_dup(dst, l);
if (r < 0)
return r;
}
dst->memory_limit = src->memory_limit;
dst->device_policy = src->device_policy;
LIST_FOREACH_BACKWARDS(device_allow, l, LIST_FIND_TAIL(device_allow, src->device_allow)) {
r = cgroup_context_add_device_allow_dup(dst, l);
if (r < 0)
return r;
}
LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_allow)) {
r = cgroup_context_add_socket_bind_item_allow_dup(dst, l);
if (r < 0)
return r;
}
LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_deny)) {
r = cgroup_context_add_socket_bind_item_deny_dup(dst, l);
if (r < 0)
return r;
}
dst->tasks_max = src->tasks_max;
return 0;
}
void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
assert(c);
assert(a);
LIST_REMOVE(device_allow, c->device_allow, a);
free(a->path);
free(a);
}
void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->io_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
assert(c);
assert(l);
LIST_REMOVE(device_latencies, c->io_device_latencies, l);
free(l->path);
free(l);
}
void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
assert(c);
assert(l);
LIST_REMOVE(device_limits, c->io_device_limits, l);
free(l->path);
free(l);
}
void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->blockio_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
assert(c);
assert(b);
LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
free(b->path);
free(b);
}
void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
assert(c);
assert(p);
LIST_REMOVE(programs, c->bpf_foreign_programs, p);
free(p->bpffs_path);
free(p);
}
void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
assert(head);
LIST_CLEAR(socket_bind_items, *head, free);
}
void cgroup_context_done(CGroupContext *c) {
assert(c);
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
while (c->io_device_latencies)
cgroup_context_free_io_device_latency(c, c->io_device_latencies);
while (c->io_device_limits)
cgroup_context_free_io_device_limit(c, c->io_device_limits);
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
while (c->blockio_device_bandwidths)
cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
cgroup_context_remove_socket_bind(&c->socket_bind_allow);
cgroup_context_remove_socket_bind(&c->socket_bind_deny);
c->ip_address_allow = set_free(c->ip_address_allow);
c->ip_address_deny = set_free(c->ip_address_deny);
c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
c->ip_filters_egress = strv_free(c->ip_filters_egress);
while (c->bpf_foreign_programs)
cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
c->restrict_network_interfaces = set_free(c->restrict_network_interfaces);
cpu_set_reset(&c->cpuset_cpus);
cpu_set_reset(&c->startup_cpuset_cpus);
cpu_set_reset(&c->cpuset_mems);
cpu_set_reset(&c->startup_cpuset_mems);
c->delegate_subgroup = mfree(c->delegate_subgroup);
nft_set_context_clear(&c->nft_set_context);
}
static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
return cg_get_attribute_as_uint64("memory", crt->cgroup_path, file, ret);
}
static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
CGroupContext *c;
CGroupMask m;
const char *file;
uint64_t unit_value;
int r;
/* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
* return -ENODATA) on cgroup v1.
*
* Returns:
*
* <0: On error.
* 0: If the kernel memory setting doesn't match our configuration.
* >0: If the kernel memory setting matches our configuration.
*
* The following values are only guaranteed to be populated on return >=0:
*
* - ret_unit_value will contain our internal expected value for the unit, page-aligned.
* - ret_kernel_value will contain the actual value presented by the kernel. */
assert(u);
r = cg_all_unified();
if (r < 0)
return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
/* Unsupported on v1.
*
* We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
* silently masked the controller. */
if (r == 0)
return -ENODATA;
/* The root slice doesn't have any controller files, so we can't compare anything. */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return -ENODATA;
/* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
* for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
* avoid specious errors in these scenarios, check that we even expect the memory controller to be
* enabled at all. */
m = unit_get_target_mask(u);
if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
return -ENODATA;
assert_se(c = unit_get_cgroup_context(u));
bool startup = u->manager && IN_SET(manager_state(u->manager), MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
if (streq(property_name, "MemoryLow")) {
unit_value = unit_get_ancestor_memory_low(u);
file = "memory.low";
} else if (startup && streq(property_name, "StartupMemoryLow")) {
unit_value = unit_get_ancestor_startup_memory_low(u);
file = "memory.low";
} else if (streq(property_name, "MemoryMin")) {
unit_value = unit_get_ancestor_memory_min(u);
file = "memory.min";
} else if (streq(property_name, "MemoryHigh")) {
unit_value = c->memory_high;
file = "memory.high";
} else if (startup && streq(property_name, "StartupMemoryHigh")) {
unit_value = c->startup_memory_high;
file = "memory.high";
} else if (streq(property_name, "MemoryMax")) {
unit_value = c->memory_max;
file = "memory.max";
} else if (startup && streq(property_name, "StartupMemoryMax")) {
unit_value = c->startup_memory_max;
file = "memory.max";
} else if (streq(property_name, "MemorySwapMax")) {
unit_value = c->memory_swap_max;
file = "memory.swap.max";
} else if (startup && streq(property_name, "StartupMemorySwapMax")) {
unit_value = c->startup_memory_swap_max;
file = "memory.swap.max";
} else if (streq(property_name, "MemoryZSwapMax")) {
unit_value = c->memory_zswap_max;
file = "memory.zswap.max";
} else if (startup && streq(property_name, "StartupMemoryZSwapMax")) {
unit_value = c->startup_memory_zswap_max;
file = "memory.zswap.max";
} else
return -EINVAL;
r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
/* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
* boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
* our internal page-counting. To support those future kernels, just check the value itself first
* without any page-alignment. */
if (*ret_kernel_value == unit_value) {
*ret_unit_value = unit_value;
return 1;
}
/* The current kernel behaviour, by comparison, is that even if you write a particular number of
* bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
* internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
* cricket. */
if (unit_value != CGROUP_LIMIT_MAX)
unit_value = PAGE_ALIGN_DOWN(unit_value);
*ret_unit_value = unit_value;
return *ret_kernel_value == *ret_unit_value;
}
#define FORMAT_CGROUP_DIFF_MAX 128
static char *format_cgroup_memory_limit_comparison(Unit *u, const char *property_name, char *buf, size_t l) {
uint64_t kval, sval;
int r;
assert(u);
assert(property_name);
assert(buf);
assert(l > 0);
r = unit_compare_memory_limit(u, property_name, &sval, &kval);
/* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
* In the absence of reliably being able to detect whether memcg swap support is available or not,
* only complain if the error is not ENOENT. This is similarly the case for memory.zswap.max relying
* on CONFIG_ZSWAP. */
if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
(r == -ENOENT && STR_IN_SET(property_name,
"MemorySwapMax",
"StartupMemorySwapMax",
"MemoryZSwapMax",
"StartupMemoryZSwapMax")))
buf[0] = 0;
else if (r < 0) {
errno = -r;
(void) snprintf(buf, l, " (error getting kernel value: %m)");
} else
(void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
return buf;
}
const char* cgroup_device_permissions_to_string(CGroupDevicePermissions p) {
static const char *table[_CGROUP_DEVICE_PERMISSIONS_MAX] = {
/* Lets simply define a table with every possible combination. As long as those are just 8 we
* can get away with it. If this ever grows to more we need to revisit this logic though. */
[0] = "",
[CGROUP_DEVICE_READ] = "r",
[CGROUP_DEVICE_WRITE] = "w",
[CGROUP_DEVICE_MKNOD] = "m",
[CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE] = "rw",
[CGROUP_DEVICE_READ|CGROUP_DEVICE_MKNOD] = "rm",
[CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "wm",
[CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "rwm",
};
if (p < 0 || p >= _CGROUP_DEVICE_PERMISSIONS_MAX)
return NULL;
return table[p];
}
CGroupDevicePermissions cgroup_device_permissions_from_string(const char *s) {
CGroupDevicePermissions p = 0;
if (!s)
return _CGROUP_DEVICE_PERMISSIONS_INVALID;
for (const char *c = s; *c; c++) {
if (*c == 'r')
p |= CGROUP_DEVICE_READ;
else if (*c == 'w')
p |= CGROUP_DEVICE_WRITE;
else if (*c == 'm')
p |= CGROUP_DEVICE_MKNOD;
else
return _CGROUP_DEVICE_PERMISSIONS_INVALID;
}
return p;
}
void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
_cleanup_free_ char *disable_controllers_str = NULL, *delegate_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
CGroupContext *c;
struct in_addr_prefix *iaai;
char cda[FORMAT_CGROUP_DIFF_MAX], cdb[FORMAT_CGROUP_DIFF_MAX], cdc[FORMAT_CGROUP_DIFF_MAX], cdd[FORMAT_CGROUP_DIFF_MAX],
cde[FORMAT_CGROUP_DIFF_MAX], cdf[FORMAT_CGROUP_DIFF_MAX], cdg[FORMAT_CGROUP_DIFF_MAX], cdh[FORMAT_CGROUP_DIFF_MAX],
cdi[FORMAT_CGROUP_DIFF_MAX], cdj[FORMAT_CGROUP_DIFF_MAX], cdk[FORMAT_CGROUP_DIFF_MAX];
assert(u);
assert(f);
assert_se(c = unit_get_cgroup_context(u));
prefix = strempty(prefix);
(void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
(void) cg_mask_to_string(c->delegate_controllers, &delegate_controllers_str);
/* "Delegate=" means "yes, but no controllers". Show this as "(none)". */
const char *delegate_str = delegate_controllers_str ?: c->delegate ? "(none)" : "no";
cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
fprintf(f,
"%sCPUAccounting: %s\n"
"%sIOAccounting: %s\n"
"%sBlockIOAccounting: %s\n"
"%sMemoryAccounting: %s\n"
"%sTasksAccounting: %s\n"
"%sIPAccounting: %s\n"
"%sCPUWeight: %" PRIu64 "\n"
"%sStartupCPUWeight: %" PRIu64 "\n"
"%sCPUShares: %" PRIu64 "\n"
"%sStartupCPUShares: %" PRIu64 "\n"
"%sCPUQuotaPerSecSec: %s\n"
"%sCPUQuotaPeriodSec: %s\n"
"%sAllowedCPUs: %s\n"
"%sStartupAllowedCPUs: %s\n"
"%sAllowedMemoryNodes: %s\n"
"%sStartupAllowedMemoryNodes: %s\n"
"%sIOWeight: %" PRIu64 "\n"
"%sStartupIOWeight: %" PRIu64 "\n"
"%sBlockIOWeight: %" PRIu64 "\n"
"%sStartupBlockIOWeight: %" PRIu64 "\n"
"%sDefaultMemoryMin: %" PRIu64 "\n"
"%sDefaultMemoryLow: %" PRIu64 "\n"
"%sMemoryMin: %" PRIu64 "%s\n"
"%sMemoryLow: %" PRIu64 "%s\n"
"%sStartupMemoryLow: %" PRIu64 "%s\n"
"%sMemoryHigh: %" PRIu64 "%s\n"
"%sStartupMemoryHigh: %" PRIu64 "%s\n"
"%sMemoryMax: %" PRIu64 "%s\n"
"%sStartupMemoryMax: %" PRIu64 "%s\n"
"%sMemorySwapMax: %" PRIu64 "%s\n"
"%sStartupMemorySwapMax: %" PRIu64 "%s\n"
"%sMemoryZSwapMax: %" PRIu64 "%s\n"
"%sStartupMemoryZSwapMax: %" PRIu64 "%s\n"
"%sMemoryZSwapWriteback: %s\n"
"%sMemoryLimit: %" PRIu64 "\n"
"%sTasksMax: %" PRIu64 "\n"
"%sDevicePolicy: %s\n"
"%sDisableControllers: %s\n"
"%sDelegate: %s\n"
"%sManagedOOMSwap: %s\n"
"%sManagedOOMMemoryPressure: %s\n"
"%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
"%sManagedOOMPreference: %s\n"
"%sMemoryPressureWatch: %s\n"
"%sCoredumpReceive: %s\n",
prefix, yes_no(c->cpu_accounting),
prefix, yes_no(c->io_accounting),
prefix, yes_no(c->blockio_accounting),
prefix, yes_no(c->memory_accounting),
prefix, yes_no(c->tasks_accounting),
prefix, yes_no(c->ip_accounting),
prefix, c->cpu_weight,
prefix, c->startup_cpu_weight,
prefix, c->cpu_shares,
prefix, c->startup_cpu_shares,
prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
prefix, strempty(cpuset_cpus),
prefix, strempty(startup_cpuset_cpus),
prefix, strempty(cpuset_mems),
prefix, strempty(startup_cpuset_mems),
prefix, c->io_weight,
prefix, c->startup_io_weight,
prefix, c->blockio_weight,
prefix, c->startup_blockio_weight,
prefix, c->default_memory_min,
prefix, c->default_memory_low,
prefix, c->memory_min, format_cgroup_memory_limit_comparison(u, "MemoryMin", cda, sizeof(cda)),
prefix, c->memory_low, format_cgroup_memory_limit_comparison(u, "MemoryLow", cdb, sizeof(cdb)),
prefix, c->startup_memory_low, format_cgroup_memory_limit_comparison(u, "StartupMemoryLow", cdc, sizeof(cdc)),
prefix, c->memory_high, format_cgroup_memory_limit_comparison(u, "MemoryHigh", cdd, sizeof(cdd)),
prefix, c->startup_memory_high, format_cgroup_memory_limit_comparison(u, "StartupMemoryHigh", cde, sizeof(cde)),
prefix, c->memory_max, format_cgroup_memory_limit_comparison(u, "MemoryMax", cdf, sizeof(cdf)),
prefix, c->startup_memory_max, format_cgroup_memory_limit_comparison(u, "StartupMemoryMax", cdg, sizeof(cdg)),
prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(u, "MemorySwapMax", cdh, sizeof(cdh)),
prefix, c->startup_memory_swap_max, format_cgroup_memory_limit_comparison(u, "StartupMemorySwapMax", cdi, sizeof(cdi)),
prefix, c->memory_zswap_max, format_cgroup_memory_limit_comparison(u, "MemoryZSwapMax", cdj, sizeof(cdj)),
prefix, c->startup_memory_zswap_max, format_cgroup_memory_limit_comparison(u, "StartupMemoryZSwapMax", cdk, sizeof(cdk)),
prefix, yes_no(c->memory_zswap_writeback),
prefix, c->memory_limit,
prefix, cgroup_tasks_max_resolve(&c->tasks_max),
prefix, cgroup_device_policy_to_string(c->device_policy),
prefix, strempty(disable_controllers_str),
prefix, delegate_str,
prefix, managed_oom_mode_to_string(c->moom_swap),
prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
prefix, managed_oom_preference_to_string(c->moom_preference),
prefix, cgroup_pressure_watch_to_string(c->memory_pressure_watch),
prefix, yes_no(c->coredump_receive));
if (c->delegate_subgroup)
fprintf(f, "%sDelegateSubgroup: %s\n",
prefix, c->delegate_subgroup);
if (c->memory_pressure_threshold_usec != USEC_INFINITY)
fprintf(f, "%sMemoryPressureThresholdSec: %s\n",
prefix, FORMAT_TIMESPAN(c->memory_pressure_threshold_usec, 1));
if (c->moom_mem_pressure_duration_usec != USEC_INFINITY)
fprintf(f, "%sManagedOOMMemoryPressureDurationSec: %s\n",
prefix, FORMAT_TIMESPAN(c->moom_mem_pressure_duration_usec, 1));
LIST_FOREACH(device_allow, a, c->device_allow)
/* strna() below should be redundant, for avoiding -Werror=format-overflow= error. See #30223. */
fprintf(f,
"%sDeviceAllow: %s %s\n",
prefix,
a->path,
strna(cgroup_device_permissions_to_string(a->permissions)));
LIST_FOREACH(device_weights, iw, c->io_device_weights)
fprintf(f,
"%sIODeviceWeight: %s %" PRIu64 "\n",
prefix,
iw->path,
iw->weight);
LIST_FOREACH(device_latencies, l, c->io_device_latencies)
fprintf(f,
"%sIODeviceLatencyTargetSec: %s %s\n",
prefix,
l->path,
FORMAT_TIMESPAN(l->target_usec, 1));
LIST_FOREACH(device_limits, il, c->io_device_limits)
for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (il->limits[type] != cgroup_io_limit_defaults[type])
fprintf(f,
"%s%s: %s %s\n",
prefix,
cgroup_io_limit_type_to_string(type),
il->path,
FORMAT_BYTES(il->limits[type]));
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
fprintf(f,
"%sBlockIODeviceWeight: %s %" PRIu64,
prefix,
w->path,
w->weight);
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
if (b->rbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOReadBandwidth: %s %s\n",
prefix,
b->path,
FORMAT_BYTES(b->rbps));
if (b->wbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOWriteBandwidth: %s %s\n",
prefix,
b->path,
FORMAT_BYTES(b->wbps));
}
SET_FOREACH(iaai, c->ip_address_allow)
fprintf(f, "%sIPAddressAllow: %s\n", prefix,
IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
SET_FOREACH(iaai, c->ip_address_deny)
fprintf(f, "%sIPAddressDeny: %s\n", prefix,
IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
STRV_FOREACH(path, c->ip_filters_ingress)
fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
STRV_FOREACH(path, c->ip_filters_egress)
fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
LIST_FOREACH(programs, p, c->bpf_foreign_programs)
fprintf(f, "%sBPFProgram: %s:%s",
prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
if (c->socket_bind_allow) {
fprintf(f, "%sSocketBindAllow: ", prefix);
cgroup_context_dump_socket_bind_items(c->socket_bind_allow, f);
fputc('\n', f);
}
if (c->socket_bind_deny) {
fprintf(f, "%sSocketBindDeny: ", prefix);
cgroup_context_dump_socket_bind_items(c->socket_bind_deny, f);
fputc('\n', f);
}
if (c->restrict_network_interfaces) {
char *iface;
SET_FOREACH(iface, c->restrict_network_interfaces)
fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
}
FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets)
fprintf(f, "%sNFTSet: %s:%s:%s:%s\n", prefix, nft_set_source_to_string(nft_set->source),
nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set);
}
void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
const char *family, *colon1, *protocol = "", *colon2 = "";
family = strempty(af_to_ipv4_ipv6(item->address_family));
colon1 = isempty(family) ? "" : ":";
if (item->ip_protocol != 0) {
protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
colon2 = ":";
}
if (item->nr_ports == 0)
fprintf(f, "%s%s%s%sany", family, colon1, protocol, colon2);
else if (item->nr_ports == 1)
fprintf(f, "%s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
else {
uint16_t port_max = item->port_min + item->nr_ports - 1;
fprintf(f, "%s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
item->port_min, port_max);
}
}
void cgroup_context_dump_socket_bind_items(const CGroupSocketBindItem *items, FILE *f) {
bool first = true;
LIST_FOREACH(socket_bind_items, bi, items) {
if (first)
first = false;
else
fputc(' ', f);
cgroup_context_dump_socket_bind_item(bi, f);
}
}
int cgroup_context_add_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
_cleanup_free_ CGroupDeviceAllow *a = NULL;
_cleanup_free_ char *d = NULL;
assert(c);
assert(dev);
assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
if (p == 0)
p = _CGROUP_DEVICE_PERMISSIONS_ALL;
a = new(CGroupDeviceAllow, 1);
if (!a)
return -ENOMEM;
d = strdup(dev);
if (!d)
return -ENOMEM;
*a = (CGroupDeviceAllow) {
.path = TAKE_PTR(d),
.permissions = p,
};
LIST_PREPEND(device_allow, c->device_allow, a);
TAKE_PTR(a);
return 0;
}
int cgroup_context_add_or_update_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
assert(c);
assert(dev);
assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
if (p == 0)
p = _CGROUP_DEVICE_PERMISSIONS_ALL;
LIST_FOREACH(device_allow, b, c->device_allow)
if (path_equal(b->path, dev)) {
b->permissions = p;
return 0;
}
return cgroup_context_add_device_allow(c, dev, p);
}
int cgroup_context_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
CGroupBPFForeignProgram *p;
_cleanup_free_ char *d = NULL;
assert(c);
assert(bpffs_path);
if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized.");
d = strdup(bpffs_path);
if (!d)
return log_oom();
p = new(CGroupBPFForeignProgram, 1);
if (!p)
return log_oom();
*p = (CGroupBPFForeignProgram) {
.attach_type = attach_type,
.bpffs_path = TAKE_PTR(d),
};
LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
return 0;
}
#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
uint64_t unit_get_ancestor_##entry(Unit *u) { \
CGroupContext *c; \
\
/* 1. Is entry set in this unit? If so, use that. \
* 2. Is the default for this entry set in any \
* ancestor? If so, use that. \
* 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
\
assert(u); \
\
c = unit_get_cgroup_context(u); \
if (c && c->entry##_set) \
return c->entry; \
\
while ((u = UNIT_GET_SLICE(u))) { \
c = unit_get_cgroup_context(u); \
if (c && c->default_##entry##_set) \
return c->default_##entry; \
} \
\
/* We've reached the root, but nobody had default for \
* this entry set, so set it to the kernel default. */ \
return CGROUP_LIMIT_MIN; \
}
UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(startup_memory_low);
UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
static void unit_set_xattr_graceful(Unit *u, const char *name, const void *data, size_t size) {
int r;
assert(u);
assert(name);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
r = cg_set_xattr(crt->cgroup_path, name, data, size, 0);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(crt->cgroup_path));
}
static void unit_remove_xattr_graceful(Unit *u, const char *name) {
int r;
assert(u);
assert(name);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
r = cg_remove_xattr(crt->cgroup_path, name);
if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(crt->cgroup_path));
}
static void cgroup_oomd_xattr_apply(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return;
if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
unit_set_xattr_graceful(u, "user.oomd_omit", "1", 1);
if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
unit_set_xattr_graceful(u, "user.oomd_avoid", "1", 1);
if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
unit_remove_xattr_graceful(u, "user.oomd_avoid");
if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
unit_remove_xattr_graceful(u, "user.oomd_omit");
}
static int cgroup_log_xattr_apply(Unit *u) {
ExecContext *c;
size_t len, allowed_patterns_len, denied_patterns_len;
_cleanup_free_ char *patterns = NULL, *allowed_patterns = NULL, *denied_patterns = NULL;
char *last;
int r;
assert(u);
c = unit_get_exec_context(u);
if (!c)
/* Some unit types have a cgroup context but no exec context, so we do not log
* any error here to avoid confusion. */
return 0;
if (set_isempty(c->log_filter_allowed_patterns) && set_isempty(c->log_filter_denied_patterns)) {
unit_remove_xattr_graceful(u, "user.journald_log_filter_patterns");
return 0;
}
r = set_make_nulstr(c->log_filter_allowed_patterns, &allowed_patterns, &allowed_patterns_len);
if (r < 0)
return log_debug_errno(r, "Failed to make nulstr from set: %m");
r = set_make_nulstr(c->log_filter_denied_patterns, &denied_patterns, &denied_patterns_len);
if (r < 0)
return log_debug_errno(r, "Failed to make nulstr from set: %m");
/* Use nul character separated strings without trailing nul */
allowed_patterns_len = LESS_BY(allowed_patterns_len, 1u);
denied_patterns_len = LESS_BY(denied_patterns_len, 1u);
len = allowed_patterns_len + 1 + denied_patterns_len;
patterns = new(char, len);
if (!patterns)
return log_oom_debug();
last = mempcpy_safe(patterns, allowed_patterns, allowed_patterns_len);
*(last++) = '\xff';
memcpy_safe(last, denied_patterns, denied_patterns_len);
unit_set_xattr_graceful(u, "user.journald_log_filter_patterns", patterns, len);
return 0;
}
static void cgroup_invocation_id_xattr_apply(Unit *u) {
bool b;
assert(u);
b = !sd_id128_is_null(u->invocation_id);
FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
if (b)
unit_set_xattr_graceful(u, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
else
unit_remove_xattr_graceful(u, xn);
}
}
static void cgroup_coredump_xattr_apply(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return;
if (unit_cgroup_delegate(u) && c->coredump_receive)
unit_set_xattr_graceful(u, "user.coredump_receive", "1", 1);
else
unit_remove_xattr_graceful(u, "user.coredump_receive");
}
static void cgroup_delegate_xattr_apply(Unit *u) {
bool b;
assert(u);
/* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
* didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
* and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
* given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
* since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
* security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
* be a big problem given this communicates delegation state to clients, but the manager never reads
* it. */
b = unit_cgroup_delegate(u);
FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
if (b)
unit_set_xattr_graceful(u, xn, "1", 1);
else
unit_remove_xattr_graceful(u, xn);
}
}
static void cgroup_survive_xattr_apply(Unit *u) {
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return;
if (u->survive_final_kill_signal) {
r = cg_set_xattr(
crt->cgroup_path,
"user.survive_final_kill_signal",
"1",
1,
/* flags= */ 0);
/* user xattr support was added in kernel v5.7 */
if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
r = cg_set_xattr(
crt->cgroup_path,
"trusted.survive_final_kill_signal",
"1",
1,
/* flags= */ 0);
if (r < 0)
log_unit_debug_errno(u,
r,
"Failed to set 'survive_final_kill_signal' xattr on control "
"group %s, ignoring: %m",
empty_to_root(crt->cgroup_path));
} else {
unit_remove_xattr_graceful(u, "user.survive_final_kill_signal");
unit_remove_xattr_graceful(u, "trusted.survive_final_kill_signal");
}
}
static void cgroup_xattr_apply(Unit *u) {
assert(u);
/* The 'user.*' xattrs can be set from a user manager. */
cgroup_oomd_xattr_apply(u);
cgroup_log_xattr_apply(u);
cgroup_coredump_xattr_apply(u);
if (!MANAGER_IS_SYSTEM(u->manager))
return;
cgroup_invocation_id_xattr_apply(u);
cgroup_delegate_xattr_apply(u);
cgroup_survive_xattr_apply(u);
}
static int lookup_block_device(const char *p, dev_t *ret) {
dev_t rdev, dev = 0;
mode_t mode;
int r;
assert(p);
assert(ret);
r = device_path_parse_major_minor(p, &mode, &rdev);
if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
struct stat st;
if (stat(p, &st) < 0)
return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
mode = st.st_mode;
rdev = st.st_rdev;
dev = st.st_dev;
} else if (r < 0)
return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
if (S_ISCHR(mode))
return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
"Device node '%s' is a character device, but block device needed.", p);
if (S_ISBLK(mode))
*ret = rdev;
else if (major(dev) != 0)
*ret = dev; /* If this is not a device node then use the block device this file is stored on */
else {
/* If this is btrfs, getting the backing block device is a bit harder */
r = btrfs_get_block_device(p, ret);
if (r == -ENOTTY)
return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
"'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
if (r < 0)
return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
}
/* If this is a LUKS/DM device, recursively try to get the originating block device */
while (block_get_originating(*ret, ret) > 0);
/* If this is a partition, try to get the originating block device */
(void) block_get_whole_disk(*ret, ret);
return 0;
}
static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
}
static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
}
static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
}
static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
return c->cpuset_mems.set || c->startup_cpuset_mems.set;
}
uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
assert(c);
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
return c->startup_cpu_weight;
else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
return c->cpu_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->startup_cpu_shares;
else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->cpu_shares;
else
return CGROUP_CPU_SHARES_DEFAULT;
}
static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_cpuset_cpus.set)
return &c->startup_cpuset_cpus;
else
return &c->cpuset_cpus;
}
static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_cpuset_mems.set)
return &c->startup_cpuset_mems;
else
return &c->cpuset_mems;
}
usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
/* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
* need to be higher than that boundary. quota is specified in USecPerSec.
* Additionally, period must be at most max_period. */
assert(quota > 0);
return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
}
static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
usec_t new_period;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return USEC_INFINITY;
if (quota == USEC_INFINITY)
/* Always use default period for infinity quota. */
return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
if (period == USEC_INFINITY)
/* Default period was requested. */
period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
/* Clamp to interval [1ms, 1s] */
new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
if (new_period != period) {
log_unit_full(u, crt->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
"Clamping CPU interval for cpu.max: period is now %s",
FORMAT_TIMESPAN(new_period, 1));
crt->warned_clamping_cpu_quota_period = true;
}
return new_period;
}
static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
if (weight == CGROUP_WEIGHT_IDLE)
return;
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
}
static void cgroup_apply_unified_cpu_idle(Unit *u, uint64_t weight) {
int r;
bool is_idle;
const char *idle_val;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
is_idle = weight == CGROUP_WEIGHT_IDLE;
idle_val = one_zero(is_idle);
r = cg_set_attribute("cpu", crt->cgroup_path, "cpu.idle", idle_val);
if (r < 0 && (r != -ENOENT || is_idle))
log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%s': %m",
"cpu.idle", empty_to_root(crt->cgroup_path), idle_val);
}
static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
assert(u);
period = cgroup_cpu_adjust_period_and_log(u, period, quota);
if (quota != USEC_INFINITY)
xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
else
xsprintf(buf, "max " USEC_FMT "\n", period);
(void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
}
static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
xsprintf(buf, "%" PRIu64 "\n", shares);
(void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
}
static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
char buf[DECIMAL_STR_MAX(usec_t) + 2];
period = cgroup_cpu_adjust_period_and_log(u, period, quota);
xsprintf(buf, USEC_FMT "\n", period);
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
if (quota != USEC_INFINITY) {
xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
} else
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
}
static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
/* we don't support idle in cgroupv1 */
if (weight == CGROUP_WEIGHT_IDLE)
return CGROUP_CPU_SHARES_MIN;
return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
}
static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
_cleanup_free_ char *buf = NULL;
buf = cpu_set_to_range_string(cpus);
if (!buf) {
log_oom();
return;
}
(void) set_attribute_and_warn(u, "cpuset", name, buf);
}
static bool cgroup_context_has_io_config(CGroupContext *c) {
return c->io_accounting ||
c->io_weight != CGROUP_WEIGHT_INVALID ||
c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
c->io_device_weights ||
c->io_device_latencies ||
c->io_device_limits;
}
static bool cgroup_context_has_blockio_config(CGroupContext *c) {
return c->blockio_accounting ||
c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->blockio_device_weights ||
c->blockio_device_bandwidths;
}
static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_io_weight != CGROUP_WEIGHT_INVALID)
return c->startup_io_weight;
if (c->io_weight != CGROUP_WEIGHT_INVALID)
return c->io_weight;
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->startup_blockio_weight;
if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->blockio_weight;
return CGROUP_BLKIO_WEIGHT_DEFAULT;
}
static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
}
static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
static const char * const prop_names[] = {
"IOWeight",
"BlockIOWeight",
"IODeviceWeight",
"BlockIODeviceWeight",
};
static bool warned = false;
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
const char *p;
uint64_t bfq_weight;
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
/* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
* See also: https://github.com/systemd/systemd/pull/13335 and
* https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
p = strjoina(controller, ".bfq.weight");
/* Adjust to kernel range is 1..1000, the default is 100. */
bfq_weight = BFQ_WEIGHT(io_weight);
if (major(dev) > 0)
xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), bfq_weight);
else
xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
r = cg_set_attribute(controller, crt->cgroup_path, p, buf);
/* FIXME: drop this when kernels prior
* 795fe54c2a82 ("bfq: Add per-device weight") v5.4
* are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
* EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
if (r == -EINVAL && major(dev) > 0) {
if (!warned) {
log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
warned = true;
}
r = -EOPNOTSUPP; /* mask as unconfigured device */
} else if (r >= 0 && io_weight != bfq_weight)
log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
io_weight, p, bfq_weight);
return r;
}
static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r, r1, r2;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
if (lookup_block_device(dev_path, &dev) < 0)
return;
r1 = set_bfq_weight(u, "io", dev, io_weight);
xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), io_weight);
r2 = cg_set_attribute("io", crt->cgroup_path, "io.weight", buf);
/* Look at the configured device, when both fail, prefer io.weight errno. */
r = r2 == -EOPNOTSUPP ? r1 : r2;
if (r < 0)
log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
empty_to_root(crt->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
}
static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), blkio_weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
}
static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
if (target != USEC_INFINITY)
xsprintf(buf, DEVNUM_FORMAT_STR " target=%" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), target);
else
xsprintf(buf, DEVNUM_FORMAT_STR " target=max\n", DEVNUM_FORMAT_VAL(dev));
(void) set_attribute_and_warn(u, "io", "io.latency", buf);
}
static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
dev_t dev;
if (lookup_block_device(dev_path, &dev) < 0)
return;
for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (limits[type] != cgroup_io_limit_defaults[type])
xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
else
xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
xsprintf(buf, DEVNUM_FORMAT_STR " rbps=%s wbps=%s riops=%s wiops=%s\n", DEVNUM_FORMAT_VAL(dev),
limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
(void) set_attribute_and_warn(u, "io", "io.max", buf);
}
static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
if (lookup_block_device(dev_path, &dev) < 0)
return;
sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), rbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), wbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
}
static bool unit_has_unified_memory_config(Unit *u) {
CGroupContext *c;
assert(u);
assert_se(c = unit_get_cgroup_context(u));
return unit_get_ancestor_memory_min(u) > 0 ||
unit_get_ancestor_memory_low(u) > 0 || unit_get_ancestor_startup_memory_low(u) > 0 ||
c->memory_high != CGROUP_LIMIT_MAX || c->startup_memory_high_set ||
c->memory_max != CGROUP_LIMIT_MAX || c->startup_memory_max_set ||
c->memory_swap_max != CGROUP_LIMIT_MAX || c->startup_memory_swap_max_set ||
c->memory_zswap_max != CGROUP_LIMIT_MAX || c->startup_memory_zswap_max_set;
}
static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
if (v != CGROUP_LIMIT_MAX)
xsprintf(buf, "%" PRIu64 "\n", v);
(void) set_attribute_and_warn(u, "memory", file, buf);
}
static void cgroup_apply_firewall(Unit *u) {
assert(u);
/* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
if (bpf_firewall_compile(u) < 0)
return;
(void) bpf_firewall_load_custom(u);
(void) bpf_firewall_install(u);
}
void unit_modify_nft_set(Unit *u, bool add) {
int r;
assert(u);
if (!MANAGER_IS_SYSTEM(u->manager))
return;
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (cg_all_unified() <= 0)
return;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || crt->cgroup_id == 0)
return;
if (!u->manager->fw_ctx) {
r = fw_ctx_new_full(&u->manager->fw_ctx, /* init_tables= */ false);
if (r < 0)
return;
assert(u->manager->fw_ctx);
}
CGroupContext *c = ASSERT_PTR(unit_get_cgroup_context(u));
FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets) {
if (nft_set->source != NFT_SET_SOURCE_CGROUP)
continue;
uint64_t element = crt->cgroup_id;
r = nft_set_element_modify_any(u->manager->fw_ctx, add, nft_set->nfproto, nft_set->table, nft_set->set, &element, sizeof(element));
if (r < 0)
log_warning_errno(r, "Failed to %s NFT set: family %s, table %s, set %s, cgroup %" PRIu64 ", ignoring: %m",
add? "add" : "delete", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, crt->cgroup_id);
else
log_debug("%s NFT set: family %s, table %s, set %s, cgroup %" PRIu64,
add? "Added" : "Deleted", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, crt->cgroup_id);
}
}
static void cgroup_apply_socket_bind(Unit *u) {
assert(u);
(void) bpf_socket_bind_install(u);
}
static void cgroup_apply_restrict_network_interfaces(Unit *u) {
assert(u);
(void) bpf_restrict_ifaces_install(u);
}
static int cgroup_apply_devices(Unit *u) {
_cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
CGroupContext *c;
CGroupDevicePolicy policy;
int r;
assert_se(c = unit_get_cgroup_context(u));
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
policy = c->device_policy;
if (cg_all_unified() > 0) {
r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
if (r < 0)
return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
} else {
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
* EINVAL here. */
if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
r = cg_set_attribute("devices", crt->cgroup_path, "devices.deny", "a");
else
r = cg_set_attribute("devices", crt->cgroup_path, "devices.allow", "a");
if (r < 0)
log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to reset devices.allow/devices.deny: %m");
}
bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
(policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
bool any = false;
if (allow_list_static) {
r = bpf_devices_allow_list_static(prog, crt->cgroup_path);
if (r > 0)
any = true;
}
LIST_FOREACH(device_allow, a, c->device_allow) {
const char *val;
if (a->permissions == 0)
continue;
if (path_startswith(a->path, "/dev/"))
r = bpf_devices_allow_list_device(prog, crt->cgroup_path, a->path, a->permissions);
else if ((val = startswith(a->path, "block-")))
r = bpf_devices_allow_list_major(prog, crt->cgroup_path, val, 'b', a->permissions);
else if ((val = startswith(a->path, "char-")))
r = bpf_devices_allow_list_major(prog, crt->cgroup_path, val, 'c', a->permissions);
else {
log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
continue;
}
if (r > 0)
any = true;
}
if (prog && !any) {
log_unit_warning(u, "No devices matched by device filter.");
/* The kernel verifier would reject a program we would build with the normal intro and outro
but no allow-listing rules (outro would contain an unreachable instruction for successful
return). */
policy = CGROUP_DEVICE_POLICY_STRICT;
}
r = bpf_devices_apply_policy(&prog, policy, any, crt->cgroup_path, &crt->bpf_device_control_installed);
if (r < 0) {
static bool warned = false;
log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
"Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
"Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
"(This warning is only shown for the first loaded unit using device ACL.)", u->id);
warned = true;
}
return r;
}
static void set_io_weight(Unit *u, uint64_t weight) {
char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
assert(u);
(void) set_bfq_weight(u, "io", makedev(0, 0), weight);
xsprintf(buf, "default %" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "io", "io.weight", buf);
}
static void set_blkio_weight(Unit *u, uint64_t weight) {
char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
assert(u);
(void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
}
static void cgroup_apply_bpf_foreign_program(Unit *u) {
assert(u);
(void) bpf_foreign_install(u);
}
static void cgroup_context_apply(
Unit *u,
CGroupMask apply_mask,
ManagerState state) {
bool is_host_root, is_local_root;
const char *path;
CGroupContext *c;
int r;
assert(u);
/* Nothing to do? Exit early! */
if (apply_mask == 0)
return;
/* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
* attributes should only be managed for cgroups further down the tree. */
is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
is_host_root = unit_has_host_root_cgroup(u);
assert_se(c = unit_get_cgroup_context(u));
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
path = crt->cgroup_path;
if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
path = "/";
/* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
* then), and missing cgroups, i.e. EROFS and ENOENT. */
/* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
* setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
* level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
* containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
* we couldn't even write to them if we wanted to). */
if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
if (cg_all_unified() > 0) {
uint64_t weight;
if (cgroup_context_has_cpu_weight(c))
weight = cgroup_context_cpu_weight(c, state);
else if (cgroup_context_has_cpu_shares(c)) {
uint64_t shares;
shares = cgroup_context_cpu_shares(c, state);
weight = cgroup_cpu_shares_to_weight(shares);
log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
shares, weight, path);
} else
weight = CGROUP_WEIGHT_DEFAULT;
cgroup_apply_unified_cpu_idle(u, weight);
cgroup_apply_unified_cpu_weight(u, weight);
cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
} else {
uint64_t shares;
if (cgroup_context_has_cpu_weight(c)) {
uint64_t weight;
weight = cgroup_context_cpu_weight(c, state);
shares = cgroup_cpu_weight_to_shares(weight);
log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
weight, shares, path);
} else if (cgroup_context_has_cpu_shares(c))
shares = cgroup_context_cpu_shares(c, state);
else
shares = CGROUP_CPU_SHARES_DEFAULT;
cgroup_apply_legacy_cpu_shares(u, shares);
cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
}
}
if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
}
/* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
* controller), and in case of containers we want to leave control of these attributes to the container manager
* (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
bool has_io, has_blockio;
uint64_t weight;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
if (has_io)
weight = cgroup_context_io_weight(c, state);
else if (has_blockio) {
uint64_t blkio_weight;
blkio_weight = cgroup_context_blkio_weight(c, state);
weight = cgroup_weight_blkio_to_io(blkio_weight);
log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
blkio_weight, weight);
} else
weight = CGROUP_WEIGHT_DEFAULT;
set_io_weight(u, weight);
if (has_io) {
LIST_FOREACH(device_weights, w, c->io_device_weights)
cgroup_apply_io_device_weight(u, w->path, w->weight);
LIST_FOREACH(device_limits, limit, c->io_device_limits)
cgroup_apply_io_device_limit(u, limit->path, limit->limits);
LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
} else if (has_blockio) {
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
weight = cgroup_weight_blkio_to_io(w->weight);
log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_io_device_weight(u, w->path, weight);
}
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
limits[type] = cgroup_io_limit_defaults[type];
limits[CGROUP_IO_RBPS_MAX] = b->rbps;
limits[CGROUP_IO_WBPS_MAX] = b->wbps;
log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
b->rbps, b->wbps, b->path);
cgroup_apply_io_device_limit(u, b->path, limits);
}
}
}
if (apply_mask & CGROUP_MASK_BLKIO) {
bool has_io, has_blockio;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
/* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
* left to our container manager, too. */
if (!is_local_root) {
uint64_t weight;
if (has_io) {
uint64_t io_weight;
io_weight = cgroup_context_io_weight(c, state);
weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
io_weight, weight);
} else if (has_blockio)
weight = cgroup_context_blkio_weight(c, state);
else
weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
set_blkio_weight(u, weight);
if (has_io)
LIST_FOREACH(device_weights, w, c->io_device_weights) {
weight = cgroup_weight_io_to_blkio(w->weight);
log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_blkio_device_weight(u, w->path, weight);
}
else if (has_blockio)
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
cgroup_apply_blkio_device_weight(u, w->path, w->weight);
}
/* The bandwidth limits are something that make sense to be applied to the host's root but not container
* roots, as there we want the container manager to handle it */
if (is_host_root || !is_local_root) {
if (has_io)
LIST_FOREACH(device_limits, l, c->io_device_limits) {
log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
}
else if (has_blockio)
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
}
}
/* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
* exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
* want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
* write to this if we wanted to.) */
if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
if (cg_all_unified() > 0) {
uint64_t max, swap_max = CGROUP_LIMIT_MAX, zswap_max = CGROUP_LIMIT_MAX, high = CGROUP_LIMIT_MAX;
if (unit_has_unified_memory_config(u)) {
bool startup = IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
high = startup && c->startup_memory_high_set ? c->startup_memory_high : c->memory_high;
max = startup && c->startup_memory_max_set ? c->startup_memory_max : c->memory_max;
swap_max = startup && c->startup_memory_swap_max_set ? c->startup_memory_swap_max : c->memory_swap_max;
zswap_max = startup && c->startup_memory_zswap_max_set ? c->startup_memory_zswap_max : c->memory_zswap_max;
} else {
max = c->memory_limit;
if (max != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
}
cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
cgroup_apply_unified_memory_limit(u, "memory.high", high);
cgroup_apply_unified_memory_limit(u, "memory.max", max);
cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
cgroup_apply_unified_memory_limit(u, "memory.zswap.max", zswap_max);
(void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
(void) set_attribute_and_warn(u, "memory", "memory.zswap.writeback", one_zero(c->memory_zswap_writeback));
} else {
char buf[DECIMAL_STR_MAX(uint64_t) + 1];
uint64_t val;
if (unit_has_unified_memory_config(u)) {
val = c->memory_max;
if (val != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryMax=%" PRIu64 " as MemoryLimit=", val);
} else
val = c->memory_limit;
if (val == CGROUP_LIMIT_MAX)
strncpy(buf, "-1\n", sizeof(buf));
else
xsprintf(buf, "%" PRIu64 "\n", val);
(void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
}
}
/* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
* containers, where we leave this to the manager */
if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
(is_host_root || cg_all_unified() > 0 || !is_local_root))
(void) cgroup_apply_devices(u);
if (apply_mask & CGROUP_MASK_PIDS) {
if (is_host_root) {
/* So, the "pids" controller does not expose anything on the root cgroup, in order not to
* replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
* the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
* non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
* exclusive ownership of the sysctls, but we still want to honour things if the user sets
* limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
* through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
* it also counts. But if the user never set a limit through us (i.e. we are the default of
* "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
* the first time we set a limit. Note that this boolean is flushed out on manager reload,
* which is desirable so that there's an official way to release control of the sysctl from
* systemd: set the limit to unbounded and reload. */
if (cgroup_tasks_max_isset(&c->tasks_max)) {
u->manager->sysctl_pid_max_changed = true;
r = procfs_tasks_set_limit(cgroup_tasks_max_resolve(&c->tasks_max));
} else if (u->manager->sysctl_pid_max_changed)
r = procfs_tasks_set_limit(TASKS_MAX);
else
r = 0;
if (r < 0)
log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
"Failed to write to tasks limit sysctls: %m");
}
/* The attribute itself is not available on the host root cgroup, and in the container case we want to
* leave it for the container manager. */
if (!is_local_root) {
if (cgroup_tasks_max_isset(&c->tasks_max)) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1];
xsprintf(buf, "%" PRIu64 "\n", cgroup_tasks_max_resolve(&c->tasks_max));
(void) set_attribute_and_warn(u, "pids", "pids.max", buf);
} else
(void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
}
}
if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
cgroup_apply_firewall(u);
if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
cgroup_apply_bpf_foreign_program(u);
if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
cgroup_apply_socket_bind(u);
if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
cgroup_apply_restrict_network_interfaces(u);
unit_modify_nft_set(u, /* add = */ true);
}
static bool unit_get_needs_bpf_firewall(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
if (c->ip_accounting ||
!set_isempty(c->ip_address_allow) ||
!set_isempty(c->ip_address_deny) ||
c->ip_filters_ingress ||
c->ip_filters_egress)
return true;
/* If any parent slice has an IP access list defined, it applies too */
for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
c = unit_get_cgroup_context(p);
if (!c)
return false;
if (!set_isempty(c->ip_address_allow) ||
!set_isempty(c->ip_address_deny))
return true;
}
return false;
}
static bool unit_get_needs_bpf_foreign_program(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
return !!c->bpf_foreign_programs;
}
static bool unit_get_needs_socket_bind(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->socket_bind_allow || c->socket_bind_deny;
}
static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
return !set_isempty(c->restrict_network_interfaces);
}
static CGroupMask unit_get_cgroup_mask(Unit *u) {
CGroupMask mask = 0;
CGroupContext *c;
assert(u);
assert_se(c = unit_get_cgroup_context(u));
/* Figure out which controllers we need, based on the cgroup context object */
if (c->cpu_accounting)
mask |= get_cpu_accounting_mask();
if (cgroup_context_has_cpu_weight(c) ||
cgroup_context_has_cpu_shares(c) ||
c->cpu_quota_per_sec_usec != USEC_INFINITY)
mask |= CGROUP_MASK_CPU;
if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
mask |= CGROUP_MASK_CPUSET;
if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (c->memory_accounting ||
c->memory_limit != CGROUP_LIMIT_MAX ||
unit_has_unified_memory_config(u))
mask |= CGROUP_MASK_MEMORY;
if (c->device_allow ||
c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
if (c->tasks_accounting ||
cgroup_tasks_max_isset(&c->tasks_max))
mask |= CGROUP_MASK_PIDS;
return CGROUP_MASK_EXTEND_JOINED(mask);
}
static CGroupMask unit_get_bpf_mask(Unit *u) {
CGroupMask mask = 0;
/* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
* too. */
if (unit_get_needs_bpf_firewall(u))
mask |= CGROUP_MASK_BPF_FIREWALL;
if (unit_get_needs_bpf_foreign_program(u))
mask |= CGROUP_MASK_BPF_FOREIGN;
if (unit_get_needs_socket_bind(u))
mask |= CGROUP_MASK_BPF_SOCKET_BIND;
if (unit_get_needs_restrict_network_interfaces(u))
mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
return mask;
}
CGroupMask unit_get_own_mask(Unit *u) {
CGroupContext *c;
/* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
* mask, as we shouldn't reflect it in the cgroup hierarchy then. */
if (u->load_state != UNIT_LOADED)
return 0;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
}
CGroupMask unit_get_delegate_mask(Unit *u) {
CGroupContext *c;
/* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
* process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
*
* Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
if (!unit_cgroup_delegate(u))
return 0;
if (cg_all_unified() <= 0) {
ExecContext *e;
e = unit_get_exec_context(u);
if (e && !exec_context_maintains_privileges(e))
return 0;
}
assert_se(c = unit_get_cgroup_context(u));
return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
}
static CGroupMask unit_get_subtree_mask(Unit *u) {
/* Returns the mask of this subtree, meaning of the group
* itself and its children. */
return unit_get_own_mask(u) | unit_get_members_mask(u);
}
CGroupMask unit_get_members_mask(Unit *u) {
assert(u);
/* Returns the mask of controllers all of the unit's children require, merged */
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (crt && crt->cgroup_members_mask_valid)
return crt->cgroup_members_mask; /* Use cached value if possible */
CGroupMask m = 0;
if (u->type == UNIT_SLICE) {
Unit *member;
UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
m |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
}
if (crt) {
crt->cgroup_members_mask = m;
crt->cgroup_members_mask_valid = true;
}
return m;
}
CGroupMask unit_get_siblings_mask(Unit *u) {
Unit *slice;
assert(u);
/* Returns the mask of controllers all of the unit's siblings
* require, i.e. the members mask of the unit's parent slice
* if there is one. */
slice = UNIT_GET_SLICE(u);
if (slice)
return unit_get_members_mask(slice);
return unit_get_subtree_mask(u); /* we are the top-level slice */
}
static CGroupMask unit_get_disable_mask(Unit *u) {
CGroupContext *c;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
return c->disable_controllers;
}
CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
CGroupMask mask;
Unit *slice;
assert(u);
mask = unit_get_disable_mask(u);
/* Returns the mask of controllers which are marked as forcibly
* disabled in any ancestor unit or the unit in question. */
slice = UNIT_GET_SLICE(u);
if (slice)
mask |= unit_get_ancestor_disable_mask(slice);
return mask;
}
CGroupMask unit_get_target_mask(Unit *u) {
CGroupMask own_mask, mask;
/* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
* it needs itself, plus all that its children need, plus all that its siblings need. This is
* primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
* hierarchy that shall be enabled for it. */
own_mask = unit_get_own_mask(u);
if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
emit_bpf_firewall_warning(u);
mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
mask &= u->manager->cgroup_supported;
mask &= ~unit_get_ancestor_disable_mask(u);
return mask;
}
CGroupMask unit_get_enable_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for the children of a specific cgroup. This is primarily
* useful for the unified cgroup hierarchy, where each cgroup
* controls which controllers are enabled for its children. */
mask = unit_get_members_mask(u);
mask &= u->manager->cgroup_supported;
mask &= ~unit_get_ancestor_disable_mask(u);
return mask;
}
void unit_invalidate_cgroup_members_masks(Unit *u) {
Unit *slice;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return;
/* Recurse invalidate the member masks cache all the way up the tree */
crt->cgroup_members_mask_valid = false;
slice = UNIT_GET_SLICE(u);
if (slice)
unit_invalidate_cgroup_members_masks(slice);
}
const char* unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
/* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
while (u) {
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (crt &&
crt->cgroup_path &&
crt->cgroup_realized &&
FLAGS_SET(crt->cgroup_realized_mask, mask))
return crt->cgroup_path;
u = UNIT_GET_SLICE(u);
}
return NULL;
}
static const char *migrate_callback(CGroupMask mask, void *userdata) {
/* If not realized at all, migrate to root ("").
* It may happen if we're upgrading from older version that didn't clean up.
*/
return strempty(unit_get_realized_cgroup_path(userdata, mask));
}
int unit_default_cgroup_path(const Unit *u, char **ret) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
assert(ret);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
p = strdup(u->manager->cgroup_root);
else {
_cleanup_free_ char *escaped = NULL, *slice_path = NULL;
Unit *slice;
slice = UNIT_GET_SLICE(u);
if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(slice->id, &slice_path);
if (r < 0)
return r;
}
r = cg_escape(u->id, &escaped);
if (r < 0)
return r;
p = path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
}
if (!p)
return -ENOMEM;
*ret = TAKE_PTR(p);
return 0;
}
int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
CGroupRuntime *crt;
int r;
assert(u);
crt = unit_get_cgroup_runtime(u);
if (crt && streq_ptr(crt->cgroup_path, path))
return 0;
unit_release_cgroup(u, /* drop_cgroup_runtime = */ true);
crt = unit_setup_cgroup_runtime(u);
if (!crt)
return -ENOMEM;
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
assert(!crt->cgroup_path);
crt->cgroup_path = TAKE_PTR(p);
return 1;
}
int unit_watch_cgroup(Unit *u) {
_cleanup_free_ char *events = NULL;
int r;
assert(u);
/* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
* cgroupv2 is available. */
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return 0;
if (crt->cgroup_control_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
if (r == 0)
return 0;
/* No point in watch the top-level slice, it's never going to run empty. */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "cgroup.events", &events);
if (r < 0)
return log_oom();
crt->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
if (crt->cgroup_control_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
* is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(crt->cgroup_path));
}
r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(crt->cgroup_control_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(crt->cgroup_path));
return 0;
}
int unit_watch_cgroup_memory(Unit *u) {
_cleanup_free_ char *events = NULL;
int r;
assert(u);
/* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
* cgroupv2 is available. */
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return 0;
CGroupContext *c = unit_get_cgroup_context(u);
if (!c)
return 0;
/* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
* this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
* all. */
if (!c->memory_accounting)
return 0;
/* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
* we also don't want to generate a log message for each parent cgroup of a process. */
if (u->type == UNIT_SLICE)
return 0;
if (crt->cgroup_memory_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_all_unified();
if (r < 0)
return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
if (r == 0)
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "memory.events", &events);
if (r < 0)
return log_oom();
crt->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
if (crt->cgroup_memory_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
* is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(crt->cgroup_path));
}
r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(crt->cgroup_memory_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(crt->cgroup_path));
return 0;
}
int unit_pick_cgroup_path(Unit *u) {
_cleanup_free_ char *path = NULL;
int r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
return -ENOMEM;
if (crt->cgroup_path)
return 0;
r = unit_default_cgroup_path(u, &path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to generate default cgroup path: %m");
r = unit_set_cgroup_path(u, path);
if (r == -EEXIST)
return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
if (r < 0)
return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
return 0;
}
static int unit_update_cgroup(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask,
ManagerState state) {
bool created, is_root_slice;
CGroupMask migrate_mask = 0;
_cleanup_free_ char *cgroup_full_path = NULL;
int r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
if (u->freezer_state != FREEZER_RUNNING)
return log_unit_error_errno(u, SYNTHETIC_ERRNO(EBUSY), "Cannot realize cgroup for frozen unit.");
/* Figure out our cgroup path */
r = unit_pick_cgroup_path(u);
if (r < 0)
return r;
CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
/* First, create our own group */
r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, crt->cgroup_path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(crt->cgroup_path));
created = r;
if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
uint64_t cgroup_id = 0;
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, NULL, &cgroup_full_path);
if (r == 0) {
r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
if (r < 0)
log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
} else
log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
crt->cgroup_id = cgroup_id;
}
/* Start watching it */
(void) unit_watch_cgroup(u);
(void) unit_watch_cgroup_memory(u);
/* For v2 we preserve enabled controllers in delegated units, adjust others,
* for v1 we figure out which controller hierarchies need migration. */
if (created || !crt->cgroup_realized || !unit_cgroup_delegate(u)) {
CGroupMask result_mask = 0;
/* Enable all controllers we need */
r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, crt->cgroup_path, &result_mask);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
/* Remember what's actually enabled now */
crt->cgroup_enabled_mask = result_mask;
migrate_mask = crt->cgroup_realized_mask ^ target_mask;
}
/* Keep track that this is now realized */
crt->cgroup_realized = true;
crt->cgroup_realized_mask = target_mask;
/* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
*
* Unnecessary controller cgroups are trimmed (after emptied by upward migration).
* We perform migration also with whole slices for cases when users don't care about leave
* granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
* delegated units.
*/
if (cg_all_unified() == 0) {
r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, crt->cgroup_path, migrate_callback, u);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(crt->cgroup_path));
is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, crt->cgroup_path, !is_root_slice);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(crt->cgroup_path));
}
/* Set attributes */
cgroup_context_apply(u, target_mask, state);
cgroup_xattr_apply(u);
/* For most units we expect that memory monitoring is set up before the unit is started and we won't
* touch it after. For PID 1 this is different though, because we couldn't possibly do that given
* that PID 1 runs before init.scope is even set up. Hence, whenever init.scope is realized, let's
* try to open the memory pressure interface anew. */
if (unit_has_name(u, SPECIAL_INIT_SCOPE))
(void) manager_setup_memory_pressure_event_source(u->manager);
return 0;
}
static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
char *pp;
int r;
assert(u);
if (MANAGER_IS_SYSTEM(u->manager))
return -EINVAL;
if (!u->manager->system_bus)
return -EIO;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
/* Determine this unit's cgroup path relative to our cgroup root */
pp = path_startswith(crt->cgroup_path, u->manager->cgroup_root);
if (!pp)
return -EINVAL;
pp = strjoina("/", pp, suffix_path);
path_simplify(pp);
r = bus_call_method(u->manager->system_bus,
bus_systemd_mgr,
"AttachProcessesToUnit",
&error, NULL,
"ssau",
NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
return 0;
}
int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
_cleanup_free_ char *joined = NULL;
const char *p;
int ret = 0, r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
if (set_isempty(pids))
return 0;
/* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
* Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
r = bpf_firewall_load_custom(u);
if (r < 0)
return r;
r = unit_realize_cgroup(u);
if (r < 0)
return r;
CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
if (isempty(suffix_path))
p = crt->cgroup_path;
else {
joined = path_join(crt->cgroup_path, suffix_path);
if (!joined)
return -ENOMEM;
p = joined;
}
PidRef *pid;
SET_FOREACH(pid, pids) {
/* Unfortunately we cannot add pids by pidfd to a cgroup. Hence we have to use PIDs instead,
* which of course is racy. Let's shorten the race a bit though, and re-validate the PID
* before we use it */
r = pidref_verify(pid);
if (r < 0) {
log_unit_info_errno(u, r, "PID " PID_FMT " vanished before we could move it to target cgroup '%s', skipping: %m", pid->pid, empty_to_root(p));
continue;
}
r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid->pid);
if (r < 0) {
bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_NEG_PRIVILEGE(r);
log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
"Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
pid->pid, again ? " directly" : "", empty_to_root(p));
if (again) {
int z;
/* If we are in a user instance, and we can't move the process ourselves due
* to permission problems, let's ask the system instance about it instead.
* Since it's more privileged it might be able to move the process across the
* leaves of a subtree whose top node is not owned by us. */
z = unit_attach_pid_to_cgroup_via_bus(u, pid->pid, suffix_path);
if (z >= 0)
goto success;
log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid->pid, empty_to_root(p));
}
RET_GATHER(ret, r);
continue;
}
success:
/* the cgroup is definitely not empty now. in case the unit was in the cgroup empty queue,
* drop it from there */
unit_remove_from_cgroup_empty_queue(u);
if (ret >= 0)
ret++; /* Count successful additions */
}
return ret;
}
int unit_remove_subcgroup(Unit *u, const char *suffix_path) {
int r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
if (!unit_cgroup_delegate(u))
return -ENOMEDIUM;
r = unit_pick_cgroup_path(u);
if (r < 0)
return r;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
_cleanup_free_ char *j = NULL;
bool delete_root;
const char *d;
if (empty_or_root(suffix_path)) {
d = empty_to_root(crt->cgroup_path);
delete_root = false; /* Don't attempt to delete the main cgroup of this unit */
} else {
j = path_join(crt->cgroup_path, suffix_path);
if (!j)
return -ENOMEM;
d = j;
delete_root = true;
}
log_unit_debug(u, "Removing subcgroup '%s'...", d);
r = cg_trim_everywhere(u->manager->cgroup_supported, d, delete_root);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to fully %s cgroup '%s': %m", delete_root ? "remove" : "trim", d);
return 0;
}
static bool unit_has_mask_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return false;
/* Returns true if this unit is fully realized. We check four things:
*
* 1. Whether the cgroup was created at all
* 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
* 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
* 4. Whether the invalidation mask is currently zero
*
* If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
* that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
* real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
* is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
* differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
* enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
* simply don't matter. */
return crt->cgroup_realized &&
((crt->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
((crt->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
crt->cgroup_invalidated_mask == 0;
}
static bool unit_has_mask_disables_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return true;
/* Returns true if all controllers which should be disabled are indeed disabled.
*
* Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
* already removed. */
return !crt->cgroup_realized ||
(FLAGS_SET(crt->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
FLAGS_SET(crt->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
}
static bool unit_has_mask_enables_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return false;
/* Returns true if all controllers which should be enabled are indeed enabled.
*
* Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
* we want to add is already added. */
return crt->cgroup_realized &&
((crt->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (crt->cgroup_realized_mask & CGROUP_MASK_V1) &&
((crt->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (crt->cgroup_enabled_mask & CGROUP_MASK_V2);
}
void unit_add_to_cgroup_realize_queue(Unit *u) {
assert(u);
if (u->in_cgroup_realize_queue)
return;
LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = true;
}
static void unit_remove_from_cgroup_realize_queue(Unit *u) {
assert(u);
if (!u->in_cgroup_realize_queue)
return;
LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = false;
}
/* Controllers can only be enabled breadth-first, from the root of the
* hierarchy downwards to the unit in question. */
static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
Unit *slice;
int r;
assert(u);
/* First go deal with this unit's parent, or we won't be able to enable
* any new controllers at this layer. */
slice = UNIT_GET_SLICE(u);
if (slice) {
r = unit_realize_cgroup_now_enable(slice, state);
if (r < 0)
return r;
}
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
/* We can only enable in this direction, don't try to disable anything.
*/
if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
return 0;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
new_target_mask = (crt ? crt->cgroup_realized_mask : 0) | target_mask;
new_enable_mask = (crt ? crt->cgroup_enabled_mask : 0) | enable_mask;
return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
}
/* Controllers can only be disabled depth-first, from the leaves of the
* hierarchy upwards to the unit in question. */
static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
Unit *m;
assert(u);
if (u->type != UNIT_SLICE)
return 0;
UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
int r;
CGroupRuntime *rt = unit_get_cgroup_runtime(m);
if (!rt)
continue;
/* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
* holding any controllers open anyway. */
if (!rt->cgroup_realized)
continue;
/* We must disable those below us first in order to release the controller. */
if (m->type == UNIT_SLICE)
(void) unit_realize_cgroup_now_disable(m, state);
target_mask = unit_get_target_mask(m);
enable_mask = unit_get_enable_mask(m);
/* We can only disable in this direction, don't try to enable anything. */
if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
continue;
new_target_mask = rt->cgroup_realized_mask & target_mask;
new_enable_mask = rt->cgroup_enabled_mask & enable_mask;
r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
if (r < 0)
return r;
}
return 0;
}
/* Check if necessary controllers and attributes for a unit are in place.
*
* - If so, do nothing.
* - If not, create paths, move processes over, and set attributes.
*
* Controllers can only be *enabled* in a breadth-first way, and *disabled* in
* a depth-first way. As such the process looks like this:
*
* Suppose we have a cgroup hierarchy which looks like this:
*
* root
* / \
* / \
* / \
* a b
* / \ / \
* / \ / \
* c d e f
* / \ / \ / \ / \
* h i j k l m n o
*
* 1. We want to realise cgroup "d" now.
* 2. cgroup "a" has DisableControllers=cpu in the associated unit.
* 3. cgroup "k" just started requesting the memory controller.
*
* To make this work we must do the following in order:
*
* 1. Disable CPU controller in k, j
* 2. Disable CPU controller in d
* 3. Enable memory controller in root
* 4. Enable memory controller in a
* 5. Enable memory controller in d
* 6. Enable memory controller in k
*
* Notice that we need to touch j in one direction, but not the other. We also
* don't go beyond d when disabling -- it's up to "a" to get realized if it
* wants to disable further. The basic rules are therefore:
*
* - If you're disabling something, you need to realise all of the cgroups from
* your recursive descendants to the root. This starts from the leaves.
* - If you're enabling something, you need to realise from the root cgroup
* downwards, but you don't need to iterate your recursive descendants.
*
* Returns 0 on success and < 0 on failure. */
static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
CGroupMask target_mask, enable_mask;
Unit *slice;
int r;
assert(u);
unit_remove_from_cgroup_realize_queue(u);
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
if (unit_has_mask_realized(u, target_mask, enable_mask))
return 0;
/* Disable controllers below us, if there are any */
r = unit_realize_cgroup_now_disable(u, state);
if (r < 0)
return r;
/* Enable controllers above us, if there are any */
slice = UNIT_GET_SLICE(u);
if (slice) {
r = unit_realize_cgroup_now_enable(slice, state);
if (r < 0)
return r;
}
/* Now actually deal with the cgroup we were trying to realise and set attributes */
r = unit_update_cgroup(u, target_mask, enable_mask, state);
if (r < 0)
return r;
CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
/* Now, reset the invalidation mask */
crt->cgroup_invalidated_mask = 0;
return 0;
}
unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
ManagerState state;
unsigned n = 0;
Unit *i;
int r;
assert(m);
state = manager_state(m);
while ((i = m->cgroup_realize_queue)) {
assert(i->in_cgroup_realize_queue);
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
/* Maybe things changed, and the unit is not actually active anymore? */
unit_remove_from_cgroup_realize_queue(i);
continue;
}
r = unit_realize_cgroup_now(i, state);
if (r < 0)
log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
n++;
}
return n;
}
void unit_add_family_to_cgroup_realize_queue(Unit *u) {
assert(u);
assert(u->type == UNIT_SLICE);
/* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
* its ancestors.
*
* Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
* very weird if two units that own processes reside in the same slice, but one is realized in the
* "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
* not), because that means individual processes need to be scheduled against whole cgroups. Let's
* avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
* controller hierarchies too (if unit requires the controller to be realized).
*
* The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
* masks. */
do {
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
/* Children of u likely changed when we're called */
if (crt)
crt->cgroup_members_mask_valid = false;
Unit *m;
UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
/* No point in doing cgroup application for units without active processes. */
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
continue;
/* We only enqueue siblings if they were realized once at least, in the main
* hierarchy. */
crt = unit_get_cgroup_runtime(m);
if (!crt || !crt->cgroup_realized)
continue;
/* If the unit doesn't need any new controllers and has current ones
* realized, it doesn't need any changes. */
if (unit_has_mask_realized(m,
unit_get_target_mask(m),
unit_get_enable_mask(m)))
continue;
unit_add_to_cgroup_realize_queue(m);
}
/* Parent comes after children */
unit_add_to_cgroup_realize_queue(u);
u = UNIT_GET_SLICE(u);
} while (u);
}
int unit_realize_cgroup(Unit *u) {
Unit *slice;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
/* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
* parents, but there's more actually: for the weight-based controllers we also need to make sure
* that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
* other hand, when a controller is removed from realized set, it may become unnecessary in siblings
* and ancestors and they should be (de)realized too.
*
* This call will defer work on the siblings and derealized ancestors to the next event loop
* iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
slice = UNIT_GET_SLICE(u);
if (slice)
unit_add_family_to_cgroup_realize_queue(slice);
/* And realize this one now (and apply the values) */
return unit_realize_cgroup_now(u, manager_state(u->manager));
}
void unit_release_cgroup(Unit *u, bool drop_cgroup_runtime) {
assert(u);
/* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
* when we close down everything for reexecution, where we really want to leave the cgroup in place. */
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return;
if (crt->cgroup_path) {
(void) hashmap_remove(u->manager->cgroup_unit, crt->cgroup_path);
crt->cgroup_path = mfree(crt->cgroup_path);
}
if (crt->cgroup_control_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, crt->cgroup_control_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", crt->cgroup_control_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(crt->cgroup_control_inotify_wd));
crt->cgroup_control_inotify_wd = -1;
}
if (crt->cgroup_memory_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, crt->cgroup_memory_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", crt->cgroup_memory_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(crt->cgroup_memory_inotify_wd));
crt->cgroup_memory_inotify_wd = -1;
}
if (drop_cgroup_runtime)
*(CGroupRuntime**) ((uint8_t*) u + UNIT_VTABLE(u)->cgroup_runtime_offset) = cgroup_runtime_free(crt);
}
int unit_cgroup_is_empty(Unit *u) {
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return -ENXIO;
if (!crt->cgroup_path)
return -EOWNERDEAD;
r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(crt->cgroup_path));
return r;
}
static bool unit_maybe_release_cgroup(Unit *u) {
int r;
/* Releases the cgroup only if it is recursively empty.
* Returns true if the cgroup was released, false otherwise. */
assert(u);
/* Don't release the cgroup if there are still processes under it. If we get notified later when all
* the processes exit (e.g. the processes were in D-state and exited after the unit was marked as
* failed) we need the cgroup paths to continue to be tracked by the manager so they can be looked up
* and cleaned up later. */
r = unit_cgroup_is_empty(u);
if (r > 0) {
/* Do not free CGroupRuntime when called from unit_prune_cgroup. Various accounting data
* we should keep, especially CPU usage and *_peak ones which would be shown even after
* the unit stops. */
unit_release_cgroup(u, /* drop_cgroup_runtime = */ false);
return true;
}
return false;
}
static int unit_prune_cgroup_via_bus(Unit *u) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(u);
assert(u->manager);
if (MANAGER_IS_SYSTEM(u->manager))
return -EINVAL;
if (!u->manager->system_bus)
return -EIO;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
/* Determine this unit's cgroup path relative to our cgroup root */
const char *pp = path_startswith(crt->cgroup_path, u->manager->cgroup_root);
if (!pp)
return -EINVAL;
_cleanup_free_ char *absolute = NULL;
if (!path_is_absolute(pp)) { /* RemoveSubgroupFromUnit() wants an absolute path */
absolute = strjoin("/", pp);
if (!absolute)
return -ENOMEM;
pp = absolute;
}
r = bus_call_method(u->manager->system_bus,
bus_systemd_mgr,
"RemoveSubgroupFromUnit",
&error, NULL,
"sst",
NULL /* empty unit name means client's unit, i.e. us */,
pp,
(uint64_t) 0);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to trim cgroup via the bus: %s", bus_error_message(&error, r));
return 0;
}
void unit_prune_cgroup(Unit *u) {
bool is_root_slice;
int r;
assert(u);
/* Removes the cgroup, if empty and possible, and stops watching it. */
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
/* Cache the last resource usage values before we destroy the cgroup */
(void) unit_get_cpu_usage(u, /* ret = */ NULL);
for (CGroupMemoryAccountingMetric metric = 0; metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST; metric++)
(void) unit_get_memory_accounting(u, metric, /* ret = */ NULL);
/* All IO metrics are read at once from the underlying cgroup, so issue just a single call */
(void) unit_get_io_accounting(u, _CGROUP_IO_ACCOUNTING_METRIC_INVALID, /* ret = */ NULL);
/* We do not cache IP metrics here because the firewall objects are not freed with cgroups */
#if BPF_FRAMEWORK
(void) bpf_restrict_fs_cleanup(u); /* Remove cgroup from the global LSM BPF map */
#endif
unit_modify_nft_set(u, /* add = */ false);
is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
r = cg_trim_everywhere(u->manager->cgroup_supported, crt->cgroup_path, !is_root_slice);
if (r < 0) {
int k = unit_prune_cgroup_via_bus(u);
if (k >= 0)
log_unit_debug_errno(u, r, "Failed to destroy cgroup %s on our own (%m), but worked when talking to PID 1.", empty_to_root(crt->cgroup_path));
else {
/* One reason we could have failed here is, that the cgroup still contains a process.
* However, if the cgroup becomes removable at a later time, it might be removed when
* the containing slice is stopped. So even if we failed now, this unit shouldn't
* assume that the cgroup is still realized the next time it is started. Do not
* return early on error, continue cleanup. */
log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r,
"Failed to destroy cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
}
}
if (is_root_slice)
return;
if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
return;
assert(crt == unit_get_cgroup_runtime(u));
assert(!crt->cgroup_path);
crt->cgroup_realized = false;
crt->cgroup_realized_mask = 0;
crt->cgroup_enabled_mask = 0;
crt->bpf_device_control_installed = bpf_program_free(crt->bpf_device_control_installed);
}
int unit_search_main_pid(Unit *u, PidRef *ret) {
_cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(u);
assert(ret);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -ENXIO;
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, &f);
if (r < 0)
return r;
for (;;) {
_cleanup_(pidref_done) PidRef npidref = PIDREF_NULL;
/* cg_read_pidref() will return an error on unmapped PIDs.
* We can't reasonably deal with units that contain those. */
r = cg_read_pidref(f, &npidref, CGROUP_DONT_SKIP_UNMAPPED);
if (r < 0)
return r;
if (r == 0)
break;
if (pidref_equal(&pidref, &npidref)) /* seen already, cgroupfs reports duplicates! */
continue;
if (pidref_is_my_child(&npidref) <= 0) /* ignore processes further down the tree */
continue;
if (pidref_is_set(&pidref) != 0)
/* Dang, there's more than one daemonized PID in this group, so we don't know what
* process is the main process. */
return -ENODATA;
pidref = TAKE_PIDREF(npidref);
}
if (!pidref_is_set(&pidref))
return -ENODATA;
*ret = TAKE_PIDREF(pidref);
return 0;
}
static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
Unit *u;
int r;
assert(s);
u = m->cgroup_empty_queue;
if (!u)
return 0;
assert(u->in_cgroup_empty_queue);
u->in_cgroup_empty_queue = false;
LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
if (m->cgroup_empty_queue) {
/* More stuff queued, let's make sure we remain enabled */
r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
}
/* Update state based on OOM kills before we notify about cgroup empty event */
(void) unit_check_oom(u);
(void) unit_check_oomd_kill(u);
unit_add_to_gc_queue(u);
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)))
unit_prune_cgroup(u);
else if (UNIT_VTABLE(u)->notify_cgroup_empty)
UNIT_VTABLE(u)->notify_cgroup_empty(u);
return 0;
}
static void unit_add_to_cgroup_empty_queue(Unit *u) {
int r;
assert(u);
/* Note that cgroup empty events are dispatched in a separate queue with a lower priority than
* the SIGCHLD handler, so that we always use SIGCHLD if we can get it first, and only use
* the cgroup empty notifications if there's no SIGCHLD pending (which might happen if the cgroup
* doesn't contain processes that are our own child, which is typically the case for scope units). */
if (u->in_cgroup_empty_queue)
return;
LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
u->in_cgroup_empty_queue = true;
/* Trigger the defer event */
r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
}
static void unit_remove_from_cgroup_empty_queue(Unit *u) {
assert(u);
if (!u->in_cgroup_empty_queue)
return;
LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
u->in_cgroup_empty_queue = false;
}
int unit_check_oomd_kill(Unit *u) {
_cleanup_free_ char *value = NULL;
bool increased;
uint64_t n = 0;
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return 0;
r = cg_all_unified();
if (r < 0)
return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
if (r == 0)
return 0;
r = cg_get_xattr_malloc(crt->cgroup_path, "user.oomd_ooms", &value, /* ret_size= */ NULL);
if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
return r;
if (!isempty(value)) {
r = safe_atou64(value, &n);
if (r < 0)
return r;
}
increased = n > crt->managed_oom_kill_last;
crt->managed_oom_kill_last = n;
if (!increased)
return 0;
n = 0;
value = mfree(value);
r = cg_get_xattr_malloc(crt->cgroup_path, "user.oomd_kill", &value, /* ret_size= */ NULL);
if (r >= 0 && !isempty(value))
(void) safe_atou64(value, &n);
if (n > 0)
log_unit_struct(u, LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_UNIT_OOMD_KILL_STR),
LOG_UNIT_INVOCATION_ID(u),
LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
LOG_ITEM("N_PROCESSES=%" PRIu64, n));
else
log_unit_struct(u, LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_UNIT_OOMD_KILL_STR),
LOG_UNIT_INVOCATION_ID(u),
LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
return 1;
}
int unit_check_oom(Unit *u) {
_cleanup_free_ char *oom_kill = NULL;
bool increased;
uint64_t c;
int r;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return 0;
r = cg_get_keyed_attribute(
"memory",
crt->cgroup_path,
"memory.events",
STRV_MAKE("oom_kill"),
&oom_kill);
if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
c = 0;
else if (r < 0)
return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
else {
r = safe_atou64(oom_kill, &c);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
}
increased = c > crt->oom_kill_last;
crt->oom_kill_last = c;
if (!increased)
return 0;
log_unit_struct(u, LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR),
LOG_UNIT_INVOCATION_ID(u),
LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
return 1;
}
static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
Unit *u;
int r;
assert(s);
u = m->cgroup_oom_queue;
if (!u)
return 0;
assert(u->in_cgroup_oom_queue);
u->in_cgroup_oom_queue = false;
LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
if (m->cgroup_oom_queue) {
/* More stuff queued, let's make sure we remain enabled */
r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
}
(void) unit_check_oom(u);
unit_add_to_gc_queue(u);
return 0;
}
static void unit_add_to_cgroup_oom_queue(Unit *u) {
int r;
assert(u);
if (u->in_cgroup_oom_queue)
return;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return;
LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
u->in_cgroup_oom_queue = true;
/* Trigger the defer event */
if (!u->manager->cgroup_oom_event_source) {
_cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
if (r < 0) {
log_error_errno(r, "Failed to create cgroup oom event source: %m");
return;
}
r = sd_event_source_set_priority(s, EVENT_PRIORITY_CGROUP_OOM);
if (r < 0) {
log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
return;
}
(void) sd_event_source_set_description(s, "cgroup-oom");
u->manager->cgroup_oom_event_source = TAKE_PTR(s);
}
r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_error_errno(r, "Failed to enable cgroup oom event source: %m");
}
static int unit_check_cgroup_events(Unit *u) {
char *values[2] = {};
int r;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return 0;
r = cg_get_keyed_attribute_graceful(
SYSTEMD_CGROUP_CONTROLLER,
crt->cgroup_path,
"cgroup.events",
STRV_MAKE("populated", "frozen"),
values);
if (r < 0)
return r;
/* The cgroup.events notifications can be merged together so act as we saw the given state for the
* first time. The functions we call to handle given state are idempotent, which makes them
* effectively remember the previous state. */
if (values[0]) {
if (streq(values[0], "1"))
unit_remove_from_cgroup_empty_queue(u);
else
unit_add_to_cgroup_empty_queue(u);
}
/* Disregard freezer state changes due to operations not initiated by us.
* See: https://github.com/systemd/systemd/pull/13512/files#r416469963 and
* https://github.com/systemd/systemd/pull/13512#issuecomment-573007207 */
if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_FREEZING_BY_PARENT, FREEZER_THAWING))
unit_freezer_complete(u, streq(values[1], "0") ? FREEZER_RUNNING : FREEZER_FROZEN);
free(values[0]);
free(values[1]);
return 0;
}
static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
assert(s);
assert(fd >= 0);
for (;;) {
union inotify_event_buffer buffer;
ssize_t l;
l = read(fd, &buffer, sizeof(buffer));
if (l < 0) {
if (ERRNO_IS_TRANSIENT(errno))
return 0;
return log_error_errno(errno, "Failed to read control group inotify events: %m");
}
FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
Unit *u;
if (e->wd < 0)
/* Queue overflow has no watch descriptor */
continue;
if (e->mask & IN_IGNORED)
/* The watch was just removed */
continue;
/* Note that inotify might deliver events for a watch even after it was removed,
* because it was queued before the removal. Let's ignore this here safely. */
u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
if (u)
unit_check_cgroup_events(u);
u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
if (u)
unit_add_to_cgroup_oom_queue(u);
}
}
}
static int cg_bpf_mask_supported(CGroupMask *ret) {
CGroupMask mask = 0;
int r;
/* BPF-based firewall */
r = bpf_firewall_supported();
if (r < 0)
return r;
if (r > 0)
mask |= CGROUP_MASK_BPF_FIREWALL;
/* BPF-based device access control */
r = bpf_devices_supported();
if (r < 0)
return r;
if (r > 0)
mask |= CGROUP_MASK_BPF_DEVICES;
/* BPF pinned prog */
r = bpf_foreign_supported();
if (r < 0)
return r;
if (r > 0)
mask |= CGROUP_MASK_BPF_FOREIGN;
/* BPF-based bind{4|6} hooks */
r = bpf_socket_bind_supported();
if (r < 0)
return r;
if (r > 0)
mask |= CGROUP_MASK_BPF_SOCKET_BIND;
/* BPF-based cgroup_skb/{egress|ingress} hooks */
r = bpf_restrict_ifaces_supported();
if (r < 0)
return r;
if (r > 0)
mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
*ret = mask;
return 0;
}
int manager_setup_cgroup(Manager *m) {
int r;
assert(m);
/* 1. Determine hierarchy */
m->cgroup_root = mfree(m->cgroup_root);
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
if (r < 0)
return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
/* Chop off the init scope, if we are already located in it */
char *e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
if (e)
*e = 0;
/* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
* easily prepend it everywhere. */
delete_trailing_chars(m->cgroup_root, "/");
/* 2. Pin the cgroupfs mount, so that it cannot be unmounted */
safe_close(m->pin_cgroupfs_fd);
m->pin_cgroupfs_fd = open("/sys/fs/cgroup", O_PATH|O_CLOEXEC|O_DIRECTORY);
if (m->pin_cgroupfs_fd < 0)
return log_error_errno(errno, "Failed to pin cgroup hierarchy: %m");
/* 3. Allocate cgroup empty defer event source */
m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
if (r < 0)
return log_error_errno(r, "Failed to create cgroup empty event source: %m");
/* Schedule cgroup empty checks early, but after having processed service notification messages or
* SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
* notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
r = sd_event_source_set_priority(m->cgroup_empty_event_source, EVENT_PRIORITY_CGROUP_EMPTY);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
if (r < 0)
return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
(void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
/* 4. Install cgroup empty event notifier inotify object */
m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
safe_close(m->cgroup_inotify_fd);
m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->cgroup_inotify_fd < 0)
return log_error_errno(errno, "Failed to create control group inotify object: %m");
r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
if (r < 0)
return log_error_errno(r, "Failed to watch control group inotify object: %m");
/* Process cgroup empty notifications early. Note that when this event is dispatched it'll
* just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
* handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
r = sd_event_source_set_priority(m->cgroup_inotify_event_source, EVENT_PRIORITY_CGROUP_INOTIFY);
if (r < 0)
return log_error_errno(r, "Failed to set priority of inotify event source: %m");
(void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
/* 5. Make sure we are in the special "init.scope" unit in the root slice. */
const char *scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, /* pid = */ 0);
if (r >= 0) {
/* Also, move all other userspace processes remaining in the root cgroup into that scope. */
r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r < 0)
log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
} else if (!MANAGER_IS_TEST_RUN(m))
return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
/* 6. Figure out which controllers are supported */
r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
if (r < 0)
return log_error_errno(r, "Failed to determine supported controllers: %m");
/* 7. Figure out which bpf-based pseudo-controllers are supported */
CGroupMask mask;
r = cg_bpf_mask_supported(&mask);
if (r < 0)
return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
m->cgroup_supported |= mask;
/* 8. Log which controllers are supported */
for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
return 0;
}
void manager_shutdown_cgroup(Manager *m, bool delete) {
assert(m);
/* We can't really delete the group, since we are in it. But
* let's trim it. */
if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
(void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
m->cgroup_root = mfree(m->cgroup_root);
}
Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
char *p;
Unit *u;
assert(m);
assert(cgroup);
u = hashmap_get(m->cgroup_unit, cgroup);
if (u)
return u;
p = strdupa_safe(cgroup);
for (;;) {
char *e;
e = strrchr(p, '/');
if (!e || e == p)
return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
*e = 0;
u = hashmap_get(m->cgroup_unit, p);
if (u)
return u;
}
}
Unit *manager_get_unit_by_pidref_cgroup(Manager *m, const PidRef *pid) {
_cleanup_free_ char *cgroup = NULL;
assert(m);
if (cg_pidref_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
return NULL;
return manager_get_unit_by_cgroup(m, cgroup);
}
Unit* manager_get_unit_by_pidref_watching(Manager *m, const PidRef *pid) {
Unit *u, **array;
assert(m);
if (!pidref_is_set(pid))
return NULL;
u = hashmap_get(m->watch_pids, pid);
if (u)
return u;
array = hashmap_get(m->watch_pids_more, pid);
if (array)
return array[0];
return NULL;
}
Unit* manager_get_unit_by_pidref(Manager *m, PidRef *pid) {
Unit *u;
assert(m);
/* Note that a process might be owned by multiple units, we return only one here, which is good
* enough for most cases, though not strictly correct. We prefer the one reported by cgroup
* membership, as that's the most relevant one as children of the process will be assigned to that
* one, too, before all else. */
if (!pidref_is_set(pid))
return NULL;
if (pidref_is_self(pid))
return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
if (pid->pid == 1)
return NULL;
u = manager_get_unit_by_pidref_cgroup(m, pid);
if (u)
return u;
u = manager_get_unit_by_pidref_watching(m, pid);
if (u)
return u;
return NULL;
}
int unit_get_memory_available(Unit *u, uint64_t *ret) {
uint64_t available = UINT64_MAX, current = 0;
assert(u);
assert(ret);
/* If data from cgroups can be accessed, try to find out how much more memory a unit can
* claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
* and MemoryMax, and also any slice the unit might be nested below. */
do {
uint64_t unit_available, unit_limit = UINT64_MAX;
CGroupContext *unit_context;
/* No point in continuing if we can't go any lower */
if (available == 0)
break;
unit_context = unit_get_cgroup_context(u);
if (!unit_context)
return -ENODATA;
(void) unit_get_memory_accounting(u, CGROUP_MEMORY_CURRENT, &current);
/* in case of error, previous current propagates as lower bound */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
unit_limit = physical_memory();
else if (unit_context->memory_max == UINT64_MAX && unit_context->memory_high == UINT64_MAX)
continue;
unit_limit = MIN3(unit_limit, unit_context->memory_max, unit_context->memory_high);
unit_available = LESS_BY(unit_limit, current);
available = MIN(unit_available, available);
} while ((u = UNIT_GET_SLICE(u)));
*ret = available;
return 0;
}
int unit_get_memory_accounting(Unit *u, CGroupMemoryAccountingMetric metric, uint64_t *ret) {
static const char* const attributes_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
[CGROUP_MEMORY_CURRENT] = "memory.current",
[CGROUP_MEMORY_PEAK] = "memory.peak",
[CGROUP_MEMORY_SWAP_CURRENT] = "memory.swap.current",
[CGROUP_MEMORY_SWAP_PEAK] = "memory.swap.peak",
[CGROUP_MEMORY_ZSWAP_CURRENT] = "memory.zswap.current",
};
uint64_t bytes;
bool updated = false;
int r;
assert(u);
assert(metric >= 0);
assert(metric < _CGROUP_MEMORY_ACCOUNTING_METRIC_MAX);
if (!UNIT_CGROUP_BOOL(u, memory_accounting))
return -ENODATA;
/* The root cgroup doesn't expose this information. */
if (unit_has_host_root_cgroup(u)) {
/* System-wide memory usage can be acquired from /proc/ */
if (metric == CGROUP_MEMORY_CURRENT)
return procfs_memory_get_used(ret);
return -ENODATA;
}
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return -ENODATA;
if (!crt->cgroup_path)
/* If the cgroup is already gone, we try to find the last cached value. */
goto finish;
if (!FLAGS_SET(crt->cgroup_realized_mask, CGROUP_MASK_MEMORY))
return -ENODATA;
r = cg_get_attribute_as_uint64("memory", crt->cgroup_path, attributes_table[metric], &bytes);
if (r < 0 && r != -ENODATA)
return r;
updated = r >= 0;
finish:
if (metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST) {
uint64_t *last = &crt->memory_accounting_last[metric];
if (updated)
*last = bytes;
else if (*last != UINT64_MAX)
bytes = *last;
else
return -ENODATA;
} else if (!updated)
return -ENODATA;
if (ret)
*ret = bytes;
return 0;
}
int unit_get_tasks_current(Unit *u, uint64_t *ret) {
assert(u);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
return -ENODATA;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_tasks_get_current(ret);
if ((crt->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
return -ENODATA;
return cg_get_attribute_as_uint64("pids", crt->cgroup_path, "pids.current", ret);
}
static int unit_get_cpu_usage_raw(const Unit *u, const CGroupRuntime *crt, nsec_t *ret) {
int r;
assert(u);
assert(crt);
assert(ret);
if (!crt->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_cpu_get_usage(ret);
/* Requisite controllers for CPU accounting are not enabled */
if ((get_cpu_accounting_mask() & ~crt->cgroup_realized_mask) != 0)
return -ENODATA;
r = cg_all_unified();
if (r < 0)
return r;
if (r == 0)
return cg_get_attribute_as_uint64("cpuacct", crt->cgroup_path, "cpuacct.usage", ret);
_cleanup_free_ char *val = NULL;
uint64_t us;
r = cg_get_keyed_attribute("cpu", crt->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
if (IN_SET(r, -ENOENT, -ENXIO))
return -ENODATA;
if (r < 0)
return r;
r = safe_atou64(val, &us);
if (r < 0)
return r;
*ret = us * NSEC_PER_USEC;
return 0;
}
int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
nsec_t ns;
int r;
assert(u);
/* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
* started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
* call this function with a NULL return value. */
if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
return -ENODATA;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return -ENODATA;
r = unit_get_cpu_usage_raw(u, crt, &ns);
if (r == -ENODATA && crt->cpu_usage_last != NSEC_INFINITY) {
/* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
* cached value. */
if (ret)
*ret = crt->cpu_usage_last;
return 0;
}
if (r < 0)
return r;
if (ns > crt->cpu_usage_base)
ns -= crt->cpu_usage_base;
else
ns = 0;
crt->cpu_usage_last = ns;
if (ret)
*ret = ns;
return 0;
}
int unit_get_ip_accounting(
Unit *u,
CGroupIPAccountingMetric metric,
uint64_t *ret) {
uint64_t value;
int fd, r;
assert(u);
assert(metric >= 0);
assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, ip_accounting))
return -ENODATA;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return -ENODATA;
fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
crt->ip_accounting_ingress_map_fd :
crt->ip_accounting_egress_map_fd;
if (fd < 0)
return -ENODATA;
if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
r = bpf_firewall_read_accounting(fd, &value, NULL);
else
r = bpf_firewall_read_accounting(fd, NULL, &value);
if (r < 0)
return r;
/* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
* all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
* ip_accounting_extra[] field, and add them in here transparently. */
*ret = value + crt->ip_accounting_extra[metric];
return r;
}
static uint64_t unit_get_effective_limit_one(Unit *u, CGroupLimitType type) {
CGroupContext *cc;
assert(u);
assert(UNIT_HAS_CGROUP_CONTEXT(u));
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
switch (type) {
case CGROUP_LIMIT_MEMORY_MAX:
case CGROUP_LIMIT_MEMORY_HIGH:
return physical_memory();
case CGROUP_LIMIT_TASKS_MAX:
return system_tasks_max();
default:
assert_not_reached();
}
cc = ASSERT_PTR(unit_get_cgroup_context(u));
switch (type) {
/* Note: on legacy/hybrid hierarchies memory_max stays CGROUP_LIMIT_MAX unless configured
* explicitly. Effective value of MemoryLimit= (cgroup v1) is not implemented. */
case CGROUP_LIMIT_MEMORY_MAX:
return cc->memory_max;
case CGROUP_LIMIT_MEMORY_HIGH:
return cc->memory_high;
case CGROUP_LIMIT_TASKS_MAX:
return cgroup_tasks_max_resolve(&cc->tasks_max);
default:
assert_not_reached();
}
}
int unit_get_effective_limit(Unit *u, CGroupLimitType type, uint64_t *ret) {
uint64_t infimum;
assert(u);
assert(ret);
assert(type >= 0);
assert(type < _CGROUP_LIMIT_TYPE_MAX);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
infimum = unit_get_effective_limit_one(u, type);
for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice))
infimum = MIN(infimum, unit_get_effective_limit_one(slice, type));
*ret = infimum;
return 0;
}
static int unit_get_io_accounting_raw(
const Unit *u,
const CGroupRuntime *crt,
uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
static const char* const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IO_READ_BYTES] = "rbytes=",
[CGROUP_IO_WRITE_BYTES] = "wbytes=",
[CGROUP_IO_READ_OPERATIONS] = "rios=",
[CGROUP_IO_WRITE_OPERATIONS] = "wios=",
};
uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
_cleanup_free_ char *path = NULL;
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(u);
assert(crt);
if (!crt->cgroup_path)
return -ENODATA;
if (unit_has_host_root_cgroup(u))
return -ENODATA; /* TODO: return useful data for the top-level cgroup */
r = cg_all_unified();
if (r < 0)
return r;
if (r == 0)
return -ENODATA;
if (!FLAGS_SET(crt->cgroup_realized_mask, CGROUP_MASK_IO))
return -ENODATA;
r = cg_get_path("io", crt->cgroup_path, "io.stat", &path);
if (r < 0)
return r;
f = fopen(path, "re");
if (!f)
return -errno;
for (;;) {
_cleanup_free_ char *line = NULL;
const char *p;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return r;
if (r == 0)
break;
p = line;
p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
p += strspn(p, WHITESPACE); /* Skip over following whitespace */
for (;;) {
_cleanup_free_ char *word = NULL;
r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
if (r < 0)
return r;
if (r == 0)
break;
for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
const char *x;
x = startswith(word, field_names[i]);
if (x) {
uint64_t w;
r = safe_atou64(x, &w);
if (r < 0)
return r;
/* Sum up the stats of all devices */
acc[i] += w;
break;
}
}
}
}
memcpy(ret, acc, sizeof(acc));
return 0;
}
int unit_get_io_accounting(
Unit *u,
CGroupIOAccountingMetric metric,
uint64_t *ret) {
uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
int r;
/*
* Retrieve an IO counter, subtracting the value of the counter value at the time the unit was started.
* If ret == NULL and metric == _<...>_INVALID, no return value is expected (refresh the caches only).
*/
assert(u);
assert(metric >= 0 || (!ret && metric == _CGROUP_IO_ACCOUNTING_METRIC_INVALID));
assert(metric < _CGROUP_IO_ACCOUNTING_METRIC_MAX);
if (!UNIT_CGROUP_BOOL(u, io_accounting))
return -ENODATA;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return -ENODATA;
r = unit_get_io_accounting_raw(u, crt, raw);
if (r == -ENODATA && metric >= 0 && crt->io_accounting_last[metric] != UINT64_MAX)
goto done;
if (r < 0)
return r;
for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
/* Saturated subtraction */
if (raw[i] > crt->io_accounting_base[i])
crt->io_accounting_last[i] = raw[i] - crt->io_accounting_base[i];
else
crt->io_accounting_last[i] = 0;
}
done:
if (ret)
*ret = crt->io_accounting_last[metric];
return 0;
}
static int unit_reset_cpu_accounting(Unit *unit, CGroupRuntime *crt) {
int r;
assert(crt);
crt->cpu_usage_base = 0;
crt->cpu_usage_last = NSEC_INFINITY;
if (unit) {
r = unit_get_cpu_usage_raw(unit, crt, &crt->cpu_usage_base);
if (r < 0 && r != -ENODATA)
return r;
}
return 0;
}
static int unit_reset_io_accounting(Unit *unit, CGroupRuntime *crt) {
int r;
assert(crt);
zero(crt->io_accounting_base);
FOREACH_ELEMENT(i, crt->io_accounting_last)
*i = UINT64_MAX;
if (unit) {
r = unit_get_io_accounting_raw(unit, crt, crt->io_accounting_base);
if (r < 0 && r != -ENODATA)
return r;
}
return 0;
}
static void cgroup_runtime_reset_memory_accounting_last(CGroupRuntime *crt) {
assert(crt);
FOREACH_ELEMENT(i, crt->memory_accounting_last)
*i = UINT64_MAX;
}
static int cgroup_runtime_reset_ip_accounting(CGroupRuntime *crt) {
int r = 0;
assert(crt);
if (crt->ip_accounting_ingress_map_fd >= 0)
RET_GATHER(r, bpf_firewall_reset_accounting(crt->ip_accounting_ingress_map_fd));
if (crt->ip_accounting_egress_map_fd >= 0)
RET_GATHER(r, bpf_firewall_reset_accounting(crt->ip_accounting_egress_map_fd));
zero(crt->ip_accounting_extra);
return r;
}
int unit_reset_accounting(Unit *u) {
int r = 0;
assert(u);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return 0;
cgroup_runtime_reset_memory_accounting_last(crt);
RET_GATHER(r, unit_reset_cpu_accounting(u, crt));
RET_GATHER(r, unit_reset_io_accounting(u, crt));
RET_GATHER(r, cgroup_runtime_reset_ip_accounting(crt));
return r;
}
void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return;
if (m == 0)
return;
/* always invalidate compat pairs together */
if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
if (FLAGS_SET(crt->cgroup_invalidated_mask, m)) /* NOP? */
return;
crt->cgroup_invalidated_mask |= m;
unit_add_to_cgroup_realize_queue(u);
}
void unit_invalidate_cgroup_bpf(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return;
if (crt->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
return;
crt->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
unit_add_to_cgroup_realize_queue(u);
/* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
* list of our children includes our own. */
if (u->type == UNIT_SLICE) {
Unit *member;
UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
unit_invalidate_cgroup_bpf(member);
}
}
void unit_cgroup_catchup(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
/* We dropped the inotify watch during reexec/reload, so we need to
* check these as they may have changed.
* Note that (currently) the kernel doesn't actually update cgroup
* file modification times, so we can't just serialize and then check
* the mtime for file(s) we are interested in. */
(void) unit_check_cgroup_events(u);
unit_add_to_cgroup_oom_queue(u);
}
bool unit_cgroup_delegate(Unit *u) {
CGroupContext *c;
assert(u);
if (!UNIT_VTABLE(u)->can_delegate)
return false;
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->delegate;
}
void manager_invalidate_startup_units(Manager *m) {
Unit *u;
assert(m);
SET_FOREACH(u, m->startup_units)
unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
}
static int unit_cgroup_freezer_kernel_state(Unit *u, FreezerState *ret) {
_cleanup_free_ char *val = NULL;
FreezerState s;
int r;
assert(u);
assert(ret);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -EOWNERDEAD;
r = cg_get_keyed_attribute(
SYSTEMD_CGROUP_CONTROLLER,
crt->cgroup_path,
"cgroup.events",
STRV_MAKE("frozen"),
&val);
if (IN_SET(r, -ENOENT, -ENXIO))
return -ENODATA;
if (r < 0)
return r;
if (streq(val, "0"))
s = FREEZER_RUNNING;
else if (streq(val, "1"))
s = FREEZER_FROZEN;
else {
log_unit_debug(u, "Unexpected cgroup frozen state: %s", val);
s = _FREEZER_STATE_INVALID;
}
*ret = s;
return 0;
}
int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
_cleanup_free_ char *path = NULL;
FreezerState current, next, objective;
bool action_in_progress = false;
int r;
assert(u);
assert(action >= 0);
assert(action < _FREEZER_ACTION_MAX);
if (!cg_freezer_supported())
return 0;
unit_next_freezer_state(u, action, &next, &objective);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
/* No realized cgroup = nothing to freeze */
goto finish;
r = unit_cgroup_freezer_kernel_state(u, &current);
if (r < 0)
return r;
if (current == objective) {
if (objective == FREEZER_FROZEN)
goto finish;
/* Skip thaw only if no freeze operation was in flight */
if (IN_SET(u->freezer_state, FREEZER_RUNNING, FREEZER_THAWING))
goto finish;
} else
action_in_progress = true;
if (next == freezer_state_finish(next)) {
/* We're directly transitioning into a finished state, which in theory means that
* the cgroup's current state already matches the objective and thus we'd return 0.
* But, reality shows otherwise (such case would have been handled by current == objective
* branch above). This indicates that our freezer_state tracking has diverged
* from the real state of the cgroup, which can happen if someone meddles with the
* cgroup from underneath us. This really shouldn't happen during normal operation,
* though. So, let's warn about it and fix up the state to be valid */
log_unit_warning(u, "Unit wants to transition to %s freezer state but cgroup is unexpectedly %s, fixing up.",
freezer_state_to_string(next), freezer_state_to_string(current) ?: "(invalid)");
if (next == FREEZER_FROZEN)
next = FREEZER_FREEZING;
else if (next == FREEZER_FROZEN_BY_PARENT)
next = FREEZER_FREEZING_BY_PARENT;
else if (next == FREEZER_RUNNING)
next = FREEZER_THAWING;
else
assert_not_reached();
}
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "cgroup.freeze", &path);
if (r < 0)
return r;
r = write_string_file(path, one_zero(objective == FREEZER_FROZEN), WRITE_STRING_FILE_DISABLE_BUFFER);
if (r < 0)
return r;
finish:
if (action_in_progress)
unit_set_freezer_state(u, next);
else
unit_set_freezer_state(u, freezer_state_finish(next));
return action_in_progress;
}
int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(cpus);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt || !crt->cgroup_path)
return -ENODATA;
if ((crt->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
return -ENODATA;
r = cg_all_unified();
if (r < 0)
return r;
if (r == 0)
return -ENODATA;
r = cg_get_attribute("cpuset", crt->cgroup_path, name, &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
}
CGroupRuntime* cgroup_runtime_new(void) {
_cleanup_(cgroup_runtime_freep) CGroupRuntime *crt = NULL;
crt = new(CGroupRuntime, 1);
if (!crt)
return NULL;
*crt = (CGroupRuntime) {
.cgroup_control_inotify_wd = -1,
.cgroup_memory_inotify_wd = -1,
.ip_accounting_ingress_map_fd = -EBADF,
.ip_accounting_egress_map_fd = -EBADF,
.ipv4_allow_map_fd = -EBADF,
.ipv6_allow_map_fd = -EBADF,
.ipv4_deny_map_fd = -EBADF,
.ipv6_deny_map_fd = -EBADF,
.cgroup_invalidated_mask = _CGROUP_MASK_ALL,
};
unit_reset_cpu_accounting(/* unit = */ NULL, crt);
unit_reset_io_accounting(/* unit = */ NULL, crt);
cgroup_runtime_reset_memory_accounting_last(crt);
assert_se(cgroup_runtime_reset_ip_accounting(crt) >= 0);
return TAKE_PTR(crt);
}
CGroupRuntime* cgroup_runtime_free(CGroupRuntime *crt) {
if (!crt)
return NULL;
fdset_free(crt->initial_socket_bind_link_fds);
#if BPF_FRAMEWORK
bpf_link_free(crt->ipv4_socket_bind_link);
bpf_link_free(crt->ipv6_socket_bind_link);
#endif
hashmap_free(crt->bpf_foreign_by_key);
bpf_program_free(crt->bpf_device_control_installed);
#if BPF_FRAMEWORK
bpf_link_free(crt->restrict_ifaces_ingress_bpf_link);
bpf_link_free(crt->restrict_ifaces_egress_bpf_link);
#endif
fdset_free(crt->initial_restrict_ifaces_link_fds);
bpf_firewall_close(crt);
free(crt->cgroup_path);
return mfree(crt);
}
static const char* const ip_accounting_metric_field_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
[CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
[CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
[CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(ip_accounting_metric_field, CGroupIPAccountingMetric);
static const char* const io_accounting_metric_field_base_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
[CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
[CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
[CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(io_accounting_metric_field_base, CGroupIOAccountingMetric);
static const char* const io_accounting_metric_field_last_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
[CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
[CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
[CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(io_accounting_metric_field_last, CGroupIOAccountingMetric);
static const char* const memory_accounting_metric_field_last_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST + 1] = {
[CGROUP_MEMORY_PEAK] = "memory-accounting-peak",
[CGROUP_MEMORY_SWAP_PEAK] = "memory-accounting-swap-peak",
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(memory_accounting_metric_field_last, CGroupMemoryAccountingMetric);
static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
_cleanup_free_ char *s = NULL;
int r;
assert(f);
assert(key);
if (mask == 0)
return 0;
r = cg_mask_to_string(mask, &s);
if (r < 0)
return log_error_errno(r, "Failed to format cgroup mask: %m");
return serialize_item(f, key, s);
}
int cgroup_runtime_serialize(Unit *u, FILE *f, FDSet *fds) {
int r;
assert(u);
assert(f);
assert(fds);
CGroupRuntime *crt = unit_get_cgroup_runtime(u);
if (!crt)
return 0;
(void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, crt->cpu_usage_base);
if (crt->cpu_usage_last != NSEC_INFINITY)
(void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, crt->cpu_usage_last);
if (crt->managed_oom_kill_last > 0)
(void) serialize_item_format(f, "managed-oom-kill-last", "%" PRIu64, crt->managed_oom_kill_last);
if (crt->oom_kill_last > 0)
(void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, crt->oom_kill_last);
for (CGroupMemoryAccountingMetric metric = 0; metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST; metric++) {
uint64_t v;
r = unit_get_memory_accounting(u, metric, &v);
if (r >= 0)
(void) serialize_item_format(f, memory_accounting_metric_field_last_to_string(metric), "%" PRIu64, v);
}
for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
uint64_t v;
r = unit_get_ip_accounting(u, m, &v);
if (r >= 0)
(void) serialize_item_format(f, ip_accounting_metric_field_to_string(m), "%" PRIu64, v);
}
for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
(void) serialize_item_format(f, io_accounting_metric_field_base_to_string(im), "%" PRIu64, crt->io_accounting_base[im]);
if (crt->io_accounting_last[im] != UINT64_MAX)
(void) serialize_item_format(f, io_accounting_metric_field_last_to_string(im), "%" PRIu64, crt->io_accounting_last[im]);
}
if (crt->cgroup_path)
(void) serialize_item(f, "cgroup", crt->cgroup_path);
if (crt->cgroup_id != 0)
(void) serialize_item_format(f, "cgroup-id", "%" PRIu64, crt->cgroup_id);
(void) serialize_bool(f, "cgroup-realized", crt->cgroup_realized);
(void) serialize_cgroup_mask(f, "cgroup-realized-mask", crt->cgroup_realized_mask);
(void) serialize_cgroup_mask(f, "cgroup-enabled-mask", crt->cgroup_enabled_mask);
(void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", crt->cgroup_invalidated_mask);
(void) bpf_socket_bind_serialize(u, f, fds);
(void) bpf_program_serialize_attachment(f, fds, "ip-bpf-ingress-installed", crt->ip_bpf_ingress_installed);
(void) bpf_program_serialize_attachment(f, fds, "ip-bpf-egress-installed", crt->ip_bpf_egress_installed);
(void) bpf_program_serialize_attachment(f, fds, "bpf-device-control-installed", crt->bpf_device_control_installed);
(void) bpf_program_serialize_attachment_set(f, fds, "ip-bpf-custom-ingress-installed", crt->ip_bpf_custom_ingress_installed);
(void) bpf_program_serialize_attachment_set(f, fds, "ip-bpf-custom-egress-installed", crt->ip_bpf_custom_egress_installed);
(void) bpf_restrict_ifaces_serialize(u, f, fds);
return 0;
}
#define MATCH_DESERIALIZE(u, key, l, v, parse_func, target) \
({ \
bool _deserialize_matched = streq(l, key); \
if (_deserialize_matched) { \
CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
if (!crt) \
log_oom_debug(); \
else { \
int _deserialize_r = parse_func(v); \
if (_deserialize_r < 0) \
log_unit_debug_errno(u, _deserialize_r, \
"Failed to parse \"%s=%s\", ignoring.", l, v); \
else \
crt->target = _deserialize_r; \
} \
} \
_deserialize_matched; \
})
#define MATCH_DESERIALIZE_IMMEDIATE(u, key, l, v, parse_func, target) \
({ \
bool _deserialize_matched = streq(l, key); \
if (_deserialize_matched) { \
CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
if (!crt) \
log_oom_debug(); \
else { \
int _deserialize_r = parse_func(v, &crt->target); \
if (_deserialize_r < 0) \
log_unit_debug_errno(u, _deserialize_r, \
"Failed to parse \"%s=%s\", ignoring", l, v); \
} \
} \
_deserialize_matched; \
})
#define MATCH_DESERIALIZE_METRIC(u, key, l, v, parse_func, target) \
({ \
bool _deserialize_matched = streq(l, key); \
if (_deserialize_matched) { \
CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
if (!crt) \
log_oom_debug(); \
else { \
int _deserialize_r = parse_func(v); \
if (_deserialize_r < 0) \
log_unit_debug_errno(u, _deserialize_r, \
"Failed to parse \"%s=%s\", ignoring.", l, v); \
else \
crt->target = _deserialize_r; \
} \
} \
_deserialize_matched; \
})
int cgroup_runtime_deserialize_one(Unit *u, const char *key, const char *value, FDSet *fds) {
int r;
assert(u);
assert(value);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cpu-usage-base", key, value, safe_atou64, cpu_usage_base) ||
MATCH_DESERIALIZE_IMMEDIATE(u, "cpuacct-usage-base", key, value, safe_atou64, cpu_usage_base))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cpu-usage-last", key, value, safe_atou64, cpu_usage_last))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "managed-oom-kill-last", key, value, safe_atou64, managed_oom_kill_last))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "oom-kill-last", key, value, safe_atou64, oom_kill_last))
return 1;
if (streq(key, "cgroup")) {
r = unit_set_cgroup_path(u, value);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", value);
(void) unit_watch_cgroup(u);
(void) unit_watch_cgroup_memory(u);
return 1;
}
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-id", key, value, safe_atou64, cgroup_id))
return 1;
if (MATCH_DESERIALIZE(u, "cgroup-realized", key, value, parse_boolean, cgroup_realized))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-realized-mask", key, value, cg_mask_from_string, cgroup_realized_mask))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-enabled-mask", key, value, cg_mask_from_string, cgroup_enabled_mask))
return 1;
if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-invalidated-mask", key, value, cg_mask_from_string, cgroup_invalidated_mask))
return 1;
if (STR_IN_SET(key, "ipv4-socket-bind-bpf-link-fd", "ipv6-socket-bind-bpf-link-fd")) {
int fd;
fd = deserialize_fd(fds, value);
if (fd >= 0)
(void) bpf_socket_bind_add_initial_link_fd(u, fd);
return 1;
}
if (STR_IN_SET(key,
"ip-bpf-ingress-installed", "ip-bpf-egress-installed",
"bpf-device-control-installed",
"ip-bpf-custom-ingress-installed", "ip-bpf-custom-egress-installed")) {
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
log_oom_debug();
else {
if (streq(key, "ip-bpf-ingress-installed"))
(void) bpf_program_deserialize_attachment(value, fds, &crt->ip_bpf_ingress_installed);
if (streq(key, "ip-bpf-egress-installed"))
(void) bpf_program_deserialize_attachment(value, fds, &crt->ip_bpf_egress_installed);
if (streq(key, "bpf-device-control-installed"))
(void) bpf_program_deserialize_attachment(value, fds, &crt->bpf_device_control_installed);
if (streq(key, "ip-bpf-custom-ingress-installed"))
(void) bpf_program_deserialize_attachment_set(value, fds, &crt->ip_bpf_custom_ingress_installed);
if (streq(key, "ip-bpf-custom-egress-installed"))
(void) bpf_program_deserialize_attachment_set(value, fds, &crt->ip_bpf_custom_egress_installed);
}
return 1;
}
if (streq(key, "restrict-ifaces-bpf-fd")) {
int fd;
fd = deserialize_fd(fds, value);
if (fd >= 0)
(void) bpf_restrict_ifaces_add_initial_link_fd(u, fd);
return 1;
}
CGroupMemoryAccountingMetric mm = memory_accounting_metric_field_last_from_string(key);
if (mm >= 0) {
uint64_t c;
r = safe_atou64(value, &c);
if (r < 0)
log_unit_debug(u, "Failed to parse memory accounting last value %s, ignoring.", value);
else {
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
log_oom_debug();
else
crt->memory_accounting_last[mm] = c;
}
return 1;
}
CGroupIPAccountingMetric ipm = ip_accounting_metric_field_from_string(key);
if (ipm >= 0) {
uint64_t c;
r = safe_atou64(value, &c);
if (r < 0)
log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", value);
else {
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
log_oom_debug();
else
crt->ip_accounting_extra[ipm] = c;
}
return 1;
}
CGroupIOAccountingMetric iom = io_accounting_metric_field_base_from_string(key);
if (iom >= 0) {
uint64_t c;
r = safe_atou64(value, &c);
if (r < 0)
log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", value);
else {
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
log_oom_debug();
else
crt->io_accounting_base[iom] = c;
}
return 1;
}
iom = io_accounting_metric_field_last_from_string(key);
if (iom >= 0) {
uint64_t c;
r = safe_atou64(value, &c);
if (r < 0)
log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", value);
else {
CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
if (!crt)
log_oom_debug();
else
crt->io_accounting_last[iom] = c;
}
return 1;
}
return 0;
}
static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
[CGROUP_DEVICE_POLICY_AUTO] = "auto",
[CGROUP_DEVICE_POLICY_CLOSED] = "closed",
[CGROUP_DEVICE_POLICY_STRICT] = "strict",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
static const char* const cgroup_pressure_watch_table[_CGROUP_PRESSURE_WATCH_MAX] = {
[CGROUP_PRESSURE_WATCH_NO] = "no",
[CGROUP_PRESSURE_WATCH_YES] = "yes",
[CGROUP_PRESSURE_WATCH_AUTO] = "auto",
[CGROUP_PRESSURE_WATCH_SKIP] = "skip",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(cgroup_pressure_watch, CGroupPressureWatch, CGROUP_PRESSURE_WATCH_YES);
static const char* const cgroup_ip_accounting_metric_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IP_INGRESS_BYTES] = "IPIngressBytes",
[CGROUP_IP_EGRESS_BYTES] = "IPEgressBytes",
[CGROUP_IP_INGRESS_PACKETS] = "IPIngressPackets",
[CGROUP_IP_EGRESS_PACKETS] = "IPEgressPackets",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_ip_accounting_metric, CGroupIPAccountingMetric);
static const char* const cgroup_io_accounting_metric_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IO_READ_BYTES] = "IOReadBytes",
[CGROUP_IO_WRITE_BYTES] = "IOWriteBytes",
[CGROUP_IO_READ_OPERATIONS] = "IOReadOperations",
[CGROUP_IO_WRITE_OPERATIONS] = "IOWriteOperations",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_io_accounting_metric, CGroupIOAccountingMetric);
static const char* const cgroup_memory_accounting_metric_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
[CGROUP_MEMORY_CURRENT] = "MemoryCurrent",
[CGROUP_MEMORY_PEAK] = "MemoryPeak",
[CGROUP_MEMORY_SWAP_CURRENT] = "MemorySwapCurrent",
[CGROUP_MEMORY_SWAP_PEAK] = "MemorySwapPeak",
[CGROUP_MEMORY_ZSWAP_CURRENT] = "MemoryZSwapCurrent",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_memory_accounting_metric, CGroupMemoryAccountingMetric);
static const char *const cgroup_effective_limit_type_table[_CGROUP_LIMIT_TYPE_MAX] = {
[CGROUP_LIMIT_MEMORY_MAX] = "EffectiveMemoryMax",
[CGROUP_LIMIT_MEMORY_HIGH] = "EffectiveMemoryHigh",
[CGROUP_LIMIT_TASKS_MAX] = "EffectiveTasksMax",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_effective_limit_type, CGroupLimitType);